版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、石家莊市2018屆高中畢業(yè)班模擬考試(二)文科數(shù)學(xué)第卷(共60分)一、選擇題:本大題共12個小題,每題5分,共60分.在每題給出的四個選項中,只有一項為哪一項符合題目要求的.1.已知會集Ax|ylog2(x2),Bx|3x3,xR,則AB()A(2,3)B2,3)C(3,)D(2,)2.若復(fù)數(shù)z滿足z(1i)2i,此中i為虛數(shù)單位,則共軛復(fù)數(shù)z()A1iB1iC1iD1i3.已知命題p:1x3,q:3x1,則p是q的()A充分不用要條件B必需不充分條件C充要條件D既不充分也不用要條件f(x)sinxx21的部分圖像可能是()4.函數(shù)x2y21x2y25.已知雙曲線a2b2(a0,b0)與橢圓1
2、214有共同焦點,且雙曲線的一條漸近線方程為y3x,則該雙曲線的方程為()x2y2x2y21x2y21x2y21B124D21A412C6266.三國時期吳國的數(shù)學(xué)家創(chuàng)立了一副“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細證明,如圖所示“勾股圓方圖”中由四個全等的正三角形(直角邊長之比為1:3)圍成的一個大正方形,中間部分是一個小正方形,假如在大正方形內(nèi)隨機取一點,則此點取自中間的小正方形部分的概率是()331313A2B424CD7.執(zhí)行以以下圖的程序框圖,則輸出的S值為()48504949A49B51C51D508.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某四周體的三視圖,則
3、該四周體的體積為()824A3B3C3D29.將函數(shù)f(x)2sinx圖象上各點的橫坐標縮短到本來的12,縱坐標不變,而后向左平移6個單位長度,獲取y,則實數(shù)a的取值范圍是g(x)圖象,若關(guān)于x的方程g(x)a在44上有兩個不相等的實根,()A2,2B2,2)C1,2)D1,2)10.若函數(shù)f(x),g(x)分別是定義在R上的偶函數(shù),奇函數(shù),且滿足f(x)2g(x)ex,則()Af(2)f(3)g(1)Bg(1)f(3)f(2)Cf(2)g(1)f(3)Dg(1)f(2)f(3)x2y21(ab0)11.已知F1,F(xiàn)2分別為橢圓a2b2P是橢圓上位于第一象限內(nèi)的點,延的左、右焦點,點長PF2交
4、橢圓于點Q,若PF1PQ,且|PF1|PQ|,則橢圓的離心率為()A22B32C21D6312.定義在(0,)上的函數(shù)f(x)滿足xf(x)lnxf(x)0f(x)為f(x)的導(dǎo)函數(shù)),若(此中a1b0,則以下各式成立的是()Aaf(a)bf(b)1Baf(a)bf(b)1Caf(a)1bf(b)Daf(a)1bf(b)第卷(共90分)二、填空題(每題5分,滿分20分,將答案填在答題紙上)13.已知向量a與b的夾角是3,|a|1,|b|12b與a的夾角為2,則向量a14.設(shè)等差數(shù)列an的前n項和為Sn,若a66,S1515,則公差dxy4,3x2y6,15.設(shè)變量x,y滿足拘束條件y1,則(x
5、1)2y2的取值范圍是16.三棱錐PABC中,PA,PB,PC兩兩成60,且PA1,PBPC2,則該三棱錐外接球的表面積為三、解答題(本大題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.)17.在ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,且acosBbsinAc(1)求角A的大??;21(2)若a2,ABC的面積為2,求bc的值18.2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”北京某綜合大學(xué)計劃在一年級開設(shè)冰球課程,為認識學(xué)生對冰球運動的興趣,隨機從該校一年級學(xué)生中抽取了1002人進行檢查,此中女生中對冰球運動有興趣的占3,而男生有
6、10人表示對冰球運動沒有興趣額(1)完成22列聯(lián)表,并回答能否有90%的掌握以為“對冰球能否有興趣與性別有關(guān)”?有興趣沒興趣合計男55女合計(2)已知在被檢查的女生中有5名數(shù)學(xué)系的學(xué)生,此中3名對冰球有興趣,此刻從這5名學(xué)生中隨機抽取3人,求最罕有2人對冰球有興趣的概率附表:P(K2k0)0.1500.1000.0500.0250.010k02.0722.7063.8415.0246.635K2n(adbc)2(ab)(cd)(ac)(bd)19.如圖,在四棱錐PABCD中,底面ABCD為矩形,平面PBC平面ABCD,PBPD(1)證明:平面PAB平面PCD;(2)若PBPC,E為棱CD的中點
7、,PEA90,BC2,求四周體APED的體積F(0,1)y1P作直線l的垂線,垂足為20.已知點2,直線l:2,P為平面上的動點,過點H,且滿足HF(PHPF)0(1)求動點P的軌跡C的方程;(2)過點F作直線l與軌跡C交于A,B兩點,M為直線l上一點,且滿足MAMB,若MAB的面積為22,求直線l的方程f(x)x21.已知函數(shù)ex.(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)記函數(shù)yf(x)的極值點為xx0,若f(x1)f(x2),且x1x2,求證:2x1x2ex0請考生在22、23兩題中任選一題作答,假如多做,則按所做的第一題記分.22.選修4-4:坐標系與參數(shù)方程x2t,在平面直角坐標系xOy
8、中,曲線C1的方程為x2y24,直線l的參數(shù)方程y333t(t為參數(shù)),3若將曲線C1上的點的橫坐標不變,縱坐標變成本來的2倍,得曲線C2(1)寫出曲線C2的參數(shù)方程;11(2)設(shè)點P(2,33),直線l與曲線C2的兩個交點分別為A,B,求|PA|PB|的值.23.選修4-5:不等式選講已知函數(shù)f(x)|3x1|3x1|,M為不等式f(x)6的解集.(1)求會集M;(2)若a,bM,求證:|ab1|ab|.石家莊市2018屆高中畢業(yè)班模擬考試(二)文科數(shù)學(xué)答案一、選擇題1-5:ACAAD6-10:CBBCD11、12:DD二、填空題591113.3,1714.215.1316.2三、解答題17
9、.解:(1)由已知及正弦定理得:sinAcosBsinBsinAsinC,sinCsin(AB)sinAcosBcosAsinBsinBsinAcosAsinB,sinB0sinAA(0,)AcosA4(2)SABC1bcsinA2bc21bc22242又a2b2c22bccosA2(bc)2(22)bc所以,(bc)24,bc2.18.解:(1)依據(jù)已知數(shù)據(jù)獲取以以下聯(lián)表有興趣沒有興趣合計男451055女301545合計7525100依據(jù)列聯(lián)表中的數(shù)據(jù),獲取所以有90%的掌握以為“對冰球能否有興趣與性別有關(guān)”(2)記5人中對冰球有興趣的3人為A、B、C,對冰球沒有興趣的2人為m、n,則從這5
10、人中隨機抽取3人,共有(A,m,n)(B,m,n)(C,m,n)(A、B、m)(A、B、n)(B、C、m)(B、C、n)(A、C、m)(A、C、n)(A、B、C)10種狀況,此中3人都對冰球有興趣的狀況有(A、B、C)1種,2人對冰球有興趣的狀況有(B、C、m)(B、C、n)(A、C、m)(A、C、n)6種,所以最少2人對冰球有興趣的狀況有7種,A、B、m)(A、B、n)7p所以,所求事件的概率10.19.()證明:四邊形ABCD是矩形,CDBC.平面PBC平面ABCD,平面PBC平面ABCD=BC,CD平面ABCD,CD平面PBC,CDPB.PBPD,CDPD=D,CD、PD平面PCD,PB
11、平面PCD.PB平面PAB,平面PAB平面PCD.()取BC的中點O,連接OP、OE.PB平面PCD,PBOP1BC1PC,2,PBPC,POBC平面PBC平面ABCD,平面PBC平面ABCD=BC,PO平面PBC,PO平面ABCD,AE平面ABCD,POAE.PEA=90O,PEAE.POPE=P,AE平面POE,AEOE.C=D=90O,OEC=EAD,OCCERtOCERtEDA,EDADOC1,AD2,CEED,CEED2,VAPEDVPAED1SAEDOP11ADEDOP112212332323PBAOCEDH(x,1)HF(x,1),PH(0,1y),20.解:(1)設(shè)P(x,y)
12、,則2,2PF(x,1y)PF(x,2y),2,PHHF(PHPF)0,x22y0,即軌跡C的方程為x22y.ykx1(II)法一:明顯直線l的斜率存在,設(shè)l的方程為2,ykx1由x222y,消去y可得:x22kx10,M(t,1)x1x22k設(shè)A(x1,y1),B(x2,y2),x1x21,2,MA(x1t,y11),MB(x2t,y21)MAMB,MAMB0,22(x1t)(x2t)(y11)(y21)0 x1x2(x1x2)tt2(kx11)(kx21)0,即2212ktt2k22k210,即t22ktk20k,即M(k,1(tk)20,t2),|AB|1k2|x1x2|1k2(x1x2
13、)24x1x22(1k2),M(k,1)到直線ld|k21|1k221k2的距離,1|AB|d(13SMABk2)2221,2,解得kxy10 xy1直線l20的方程為或2法2:()設(shè)A(x1,y1),B(x2,y2),AB的中點為Ex0,y0 x122y1(x1x2)(x1x2)2(y1y2)x0y1y2kABx222y2x1x2則y1直線l的方程為x0 x2,過點A,B分別作AA1l于A1,BB1l于B1,由于MAMB,E為AB的中點,所以在RtAMB中,|EM|1|AB|1(|AF|BF|)1(|AA1|BB1|)222故EM是直角梯形A1B1BA的中位線,可得EMl,從而M(x0,1)
14、2d|x021|x02121x0點M到直線l的距離為:y021由于E點在直線l上,所以有x02,從而|AB|y1y212y021)12(x0SMAB1|AB|d12(x021)x021221由22解得x0yx1yx1所以直線l的方程為2或2f(x)exxex1x0,則x21.解:(1)(ex)2ex,令f(x)1,當x(,1)時,f(x)0,當x(1,)時,f(x)0,則函數(shù)f(x)的增區(qū)間為(,1),減區(qū)間為(1,).(2)由可得fx1xex0,所以yfx的極值點為x01.于是,2x1x2ex0等價于2x1x2e,由fx1fx2xex1xex2且0 x1x得1212.由x1ex1x2ex2整
15、理得,lnx1x1lnx2x2,即lnx1lnx2x1x2.等價于2x1x2lnx1lnx2ex1x2,x1t令x2,則0t1.式整理得2t1lntet1,此中0t1.設(shè)gt2t1lntet1,0t1.只需證明當0t1時,gtmax0.gt2lnt12e,設(shè)htgt2lnt12ett又,ht212t1tt2t2則驏1驏1t?0,t0,ht?0,當?2?2桫時,h在桫上單調(diào)遞減;驏驏t?1?1?,1t0,ht?,1當?桫2時,h在桫2上單調(diào)遞加.gtming142ln2e0所以,2;ge22lne212ee22e0注意到,e2,g13e0,t10,1,t21,1所以,存在22,使得g(t1)=g
16、(t2)=0,11驏110?t1g?0,,而e?2e.注意到,e桫,所以0t1t2t11t0可得或;由g(t)0可得.gt0,1,t2,11,t2在e上單調(diào)遞加,在e上單調(diào)遞減.gtmaxmaxg1,g1g(1)=0g1e220于是,e,注意到,ee,所以,gtmax0,也即2t1lntet1,此中0t1.于是,2x1x2ex0.22解:(1)若將曲線C1上的點的縱坐標變成本來的3x2(2y)242,則曲線C2的直角坐標方程為3,2y2x2cos,x1曲線C2的參數(shù)方程y3sin整理得49,(為參數(shù))x21t2(2)將直線ly333t的參數(shù)方程化為標準形式為2(t為參數(shù)),1t)222y2(2(333t)x12214949將參數(shù)方程帶入得7(t)218t360整理得4.PAPBt1t
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年04月中國農(nóng)業(yè)發(fā)展銀行廣東省分行紀委辦調(diào)查專業(yè)人才社會招考筆試歷年參考題庫附帶答案詳解
- 2025年度常州消防設(shè)施檢測與鑒定合同4篇
- 2024版水泥混凝土運輸合同書
- 2025年度城市基礎(chǔ)設(shè)施配套拆遷施工合同4篇
- 專業(yè)菊花供應(yīng)商2024年銷售協(xié)議版B版
- 《流行病癥:新型冠狀病毒肺炎》課件
- 二零二五年度玻璃原材料期貨交易合同6篇
- 2024年03月廣東中信銀行深圳分行社會招考筆試歷年參考題庫附帶答案詳解
- 二零二五版存量房市場政策研究合同3篇
- 2024簡易散伙協(xié)議規(guī)范格式
- 食堂經(jīng)營方案(技術(shù)標)
- 代收實收資本三方協(xié)議范本
- 人教版八年級英語下冊全冊課件【完整版】
- 乒乓球比賽表格
- 商務(wù)接待表格
- 腸梗阻導(dǎo)管治療
- word小報模板:優(yōu)美企業(yè)報刊報紙排版設(shè)計
- 移動商務(wù)內(nèi)容運營(吳洪貴)任務(wù)五 其他內(nèi)容類型的生產(chǎn)
- 漢語教學(xué) 《成功之路+進步篇+2》第17課課件
- 三十頌之格助詞【精品課件】-A3演示文稿設(shè)計與制作【微能力認證優(yōu)秀作業(yè)】
- 浙江省紹興市2023年中考科學(xué)試題(word版-含答案)
評論
0/150
提交評論