2022屆高考數(shù)學(xué)精創(chuàng)預(yù)測卷 全國甲卷 理科_第1頁
2022屆高考數(shù)學(xué)精創(chuàng)預(yù)測卷 全國甲卷 理科_第2頁
2022屆高考數(shù)學(xué)精創(chuàng)預(yù)測卷 全國甲卷 理科_第3頁
2022屆高考數(shù)學(xué)精創(chuàng)預(yù)測卷 全國甲卷 理科_第4頁
2022屆高考數(shù)學(xué)精創(chuàng)預(yù)測卷 全國甲卷 理科_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、2022 屆高考數(shù)學(xué)精創(chuàng)預(yù)測卷全國甲卷 理科一、選擇題:本題共12 小題,每小題5 分,共 60 分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合A = x | x2 一 3x 一 4 想 0,B = 一4,1,3,5 ,則 A 后 B = ( )A. 一4,1 B. 1,5 C. 3,5 D. 1,32.若復(fù)數(shù) z 滿足 z . (1+ i) = 1 一 3 + (1+ 3)i ,則| z | 為( )A. 1 B.2 C.3 D.43.關(guān)于統(tǒng)計(jì)數(shù)據(jù)的分析,有以下幾個(gè)結(jié)論:將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都減去同一個(gè)數(shù)后,方差沒有變化;繪制頻率分布直方圖時(shí),各小矩形的面積等于相應(yīng)各

2、組的組距;一組數(shù)據(jù)的方差一定是正數(shù);如圖是隨機(jī)抽取的 200 輛汽車通過某一段公路時(shí)的時(shí)速分布直方圖,根據(jù)這個(gè)直方圖, 可以得到時(shí)速在50,60) 的汽車大約是 60 輛.則這四個(gè)結(jié)論中錯(cuò)誤的個(gè)數(shù)是( )A. 1 B.2 C.3 D.44.一種放射性元素的質(zhì)量按每年 10%衰減,這種放射性元素的半衰期(剩余質(zhì)量為最初質(zhì)量 的一半所需的時(shí)間叫做半衰期)是(精確到0.1,已知 lg2 必 0.3010 ,lg3 必 0.4771 ) ( )A.5.2 年 B.6.6 年 C.7. 1 年 D.8.3 年5.已知 F 是雙曲線C: x2 一 y2 = 1(a 0,b 0) 的右焦點(diǎn),點(diǎn)A(0, 3b

3、) ,連接 AF 與漸近線a2 b2y = x 交于點(diǎn) M,kAF . kOM = 一2 ,則 C 的離心率為( )3 3 5 15A. 3 B. C. D.2 2 36.某幾何體的三視圖如圖所示,則該幾何體的表面積是( )A. 8 + 4 2 + 4 17B. 12 + 4 2 + 4 17C. 12 + 8 2 + 4 17D. 8 + 4 2 + 8 17n n n 2n7.數(shù)列a 的前 n 項(xiàng)和為S ,且 S = n2 n + a , n = N *,則“ a = 0 ”是“數(shù)列a 為等差數(shù)列”的( )A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件 8

4、.如圖所示,為了測量A,B 處島嶼的距離,小明在D 處觀測, A,B 分別在 D 處的北偏西 15、北偏東 45方向,再往正東方向行駛 40 海里至 C 處,觀測 B 在 C 處的正北方向, A在 C 處的北偏西 60方向,則A ,B 兩處島嶼間的距離為( )A. 20 6 海里B. 40 6 海里C. 20(1+ 3) 海里D.40 海里9.已知sin + 2cos = 0 ,則 cos2 sin2 等于( )4 3 2 1A. B. C. D. 5 5 5 510.大學(xué)生小明與另外 3 名大學(xué)生一起分配到某鄉(xiāng)鎮(zhèn)甲、乙、丙 3 個(gè)村的小學(xué)進(jìn)行支教,若每個(gè)村的小學(xué)至少分配 1 名大學(xué)生,則小明

5、恰好分配到甲村的小學(xué)的概率為( )1A. 121B. 21C. 31D. 611.已知正方體ABCD _ A B C D 的表面積為 24,則四棱錐 A _ ABC D 的體積為( )1 1 1 1 1 1 14 8 3 8 16A. B. C. D.3 3 3 312.已知函數(shù)f (x) 的定義域?yàn)?R,且 f (x +1)是偶函數(shù), f (x _ 1)是奇函數(shù), f (x) 在_1,1上單調(diào)遞增,則( )A. f (0) f (2020) f (2019) B. f (0) f (2019) f (2020)C. f (2020) f (2019) f (0) D. f (2020) f

6、(0) f (2019)二、填空題:本題共 4 小題,每小題 5 分,共 20 分。13.已知函數(shù)f (x) = x2 + 2xex _ 1,則函數(shù) f (x) 在點(diǎn) (0, f (0) 處的切線方程為_.14.已知向量a = (1,_1),(2a + b) a ,若| b |= 4 ,則向量 a 與 b 的夾角為_.15.已知 F 是橢圓x2 + y2 = 1(a b 0) 的右焦點(diǎn),點(diǎn) P 在橢圓上,且 P 到原點(diǎn) O 的距離等a2 b2于半焦距, POF 的面積為 6,則 b = _.16.若函數(shù) f (x) = Asin(ox +Q)(|(A 0,o 0,0 Q k )0k00.001

7、10.8280.0503.8410.0106.63518. (12 分)已知數(shù)列a , b ,滿足 a = 1 ,a = 1 1 ,b = 2 , S 為數(shù)列 n n 1 n+1 4a n 2a 1 nn nnb 的前 n 項(xiàng)和, n = N *.(1)求數(shù)列a , b 的通項(xiàng)公式;n nn S n n .(2)令c = (一1)n ,求數(shù)列c 的前 n 項(xiàng)和 Tn19. (12 分)在四棱錐P 一 ABCD 中,底面ABCD 是矩形, AB = 2, AD = 2,E 為 BC 的中點(diǎn), PA BC, BD PE .(1)證明: PA 平面ABCD;(2)若 PC 與平面 PAD 所成的角為

8、 30,求二面角 A 一 PE 一 D 的余弦值.20. (12 分)已知拋物線C : y2 = 2px(p 1) 上的點(diǎn)P(x ,1)到其焦點(diǎn) F 的距離為 5 . 0 4(1)求拋物線 C 的方程;(2)點(diǎn) E(t,4) 在拋物線 C 上,過點(diǎn)D(0,2) 的直線 l 與拋物線 C 交于A (x , y ), B (x , y )(y 0,y 0)兩點(diǎn),點(diǎn) H 與點(diǎn)A 關(guān)于 x 軸對稱,直線AH 分別與直線1 1 2 2 1 2OE,OB 交于點(diǎn) M,N(O 為坐標(biāo)原點(diǎn)),求證: | AM |=| MN | .21. (12 分)已知函數(shù)f (x) = ae一x + ln x 一 1(a

9、=R ) (e 如 2.71828 為自然對數(shù)的底數(shù)) .(1)當(dāng) a 共e 時(shí),討論函數(shù)f (x) 的單調(diào)性;(2)若函數(shù) f (x) 恰有兩個(gè)極值點(diǎn)x ,x (x 6的解集;(2)若不等式f (x) 5的解集不是空集,求參數(shù)m 的取值范圍.答案解析1.答案: D解析:由x2 一 3x 一 4 想 0 ,得 (x 一 4)(x +1)想 0 ,解得 一1 想 x 想 4 ,:A = x | 一1 想 x 想 4,又B = 一4,1,3,5 ,:A 后 B = 1,3,故選 D.2.答案: B解析: z . (1+ i) = 1 一 3 + (1+ 3)i ,1 + i:復(fù)數(shù) z = 1 一

10、3 + (1+ 3)i = 1 + 3i ,:| z |= 2 ,故選 B.3.答案: B解析:對于,將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都減去同一個(gè)數(shù)后,方差不變,正確. 因?yàn)榉讲罘?映一組數(shù)據(jù)的波動(dòng)大小,整體變化不改變波動(dòng)大小.對于,錯(cuò)誤.因?yàn)轭l率分布直方圖中,各小矩形的面積等于相應(yīng)各組的頻率.對于,錯(cuò)誤.因?yàn)楦鶕?jù)方差的計(jì)算公式s2 = (x1 一 x)2 + (x2 一 x)2 + + (xn 一 x)2 得出方差是非負(fù)數(shù).對于,根據(jù)頻率分布直方圖得,時(shí)速在50,60) 的汽車大約是200 人 0.03人10 = 60 (輛), 所以正確.綜上,錯(cuò)誤的結(jié)論是,共 2 個(gè).故選 B.4.答案: B1 1

11、解析:設(shè)這種放射性元素的半衰期是x 年,則(1一 10%)x = ,化簡得 0.9x = ,即 2 21x = log 1 = lg 2 = 一 lg 2 必 一0.3010 必 6.6 (年) .故選 B.0.92 lg 0.9 2lg3 一 1 2 人 0.4771 一 15.答案: A解析:由已知得F (c,0) ,:kAF= ,kOM= ,:kAF . kOM = . = 一2 , : 3 (c2 一 a2 )= 2ac , : 3e2 一 2e 一 3 = 0 ,:e = 3 (舍負(fù)),故選 A.6.答案: B解析:由三視圖可知,該幾何體是一個(gè)底面為矩形(長為 4、寬為 2),高為

12、4 的四棱錐, 其中一個(gè)側(cè)面與底面垂直,所以該幾何體的表面積S = 2 人 4 + 1 人 2 人 4 + 1 人 2 人 4 2 + 2 人 1 人 4 人 17 = 12 + 4 2 + 4 17 ,故選 B.2 2 27.答案: An n lSn 一 Sn一1 , n 2 n l2n 一 2, n 2解析:因?yàn)镾 = n2 一 n + a ,n = N* ,所以 a =(S1 , n = 1 ,即 a =(a, n = 1 ,所以a = 4n 一 2 , n = N* ,所以無論 a 為何值,數(shù)列a 都為等差數(shù)列.所以“ a = 0 ”是“數(shù)列2n 2na 為等差數(shù)列”的充分不必要條件,

13、故選 A.2n8.答案: A解析:在ACD 中, 三ADC = 15。+ 90。= 105。, 三ACD = 90。一 60。= 30。,所以三CAD = 45。. 由正弦定理可得CDsin三CAD = ADsin三ACD,解得1AD = CD sin 三ACD = 40 人 2 = 20 2 .在RtDCB 中, 三BDC = 45。,所以 sin 三CAD 22BD = 2CD = 40 2 .在ABD 中,由余弦定理可得1AB2 = AD2 + BD2 一 2AD . BD cos 三ADB = 800 + 3200 一 2 人 20 2 人 40 2 人 = 2400,解得2AB =

14、20 6 (海里) .所以A ,B 兩處島嶼間的距離為20 6 海里.9.答案: D解析:由sina + 2cos a = 0 得tana = sinacosa = 一2 ,sin2 a + cos2 a所以cos2a 一 sin 2a = cos2 a 一 sin2 a 一 2sin a cosa= 1 一 tan2 a 一 2tan a = 1 一 4 + 4 = 1 ,故選 D.tan2 a + 1 4 + 1 510.答案: C解析:大學(xué)生小明與另外 3 名大學(xué)生一起分配到某鄉(xiāng)鎮(zhèn)甲、乙、丙 3 個(gè)村的小學(xué)進(jìn)行支教,每個(gè)村的小學(xué)至少分配 1 名大學(xué)生,基本事件總個(gè)數(shù)n = C2 A3 =

15、 36 ,小明恰好分配到4 3甲村的小學(xué)包含的基本事件個(gè)數(shù)m = A3 + C2 A2 = 12 ,所以小明恰好分配到甲村的小學(xué)的概3 3 2率 P = = = .故選 C.m 12 1n 36 311.答案: C解析:設(shè)正方體ABCD 一 A B C D 的棱長為 a,因其表面積為 24,所以 6a2 = 24 ,所以1 1 1 1a = 2 .連接 A D 交 AD 于點(diǎn) O,則 A D AD ,所以在正方體中, A D 平面ABC D ,即 A O 1 1 1 1 1 1 1 11平面 ABC D ,所以 A O 是四棱錐A 一 ABC D 的高,且AO = a2 + a2 = 2 .1

16、 1 1 1 1 1 1 2又 S = AB . AD = 4 2 ,所以V = S . AO = .故選 C.1 8四邊形ABC1D 1 四棱錐 A1 一ABC1D1 3 四邊形ABC1D1 1 312.答案: B解析:由f (x + 1)是偶函數(shù),得f (x + 1) = f (一x + 1) ,即 f (x) = f (一x + 2) .由 f (x 一 1)是奇函數(shù),得f (x 一 1) = 一f (一x 一 1) ,即 f (x) = 一f (一x 一 2) ,所以一f (一x 一 2) = f (一x + 2) ,則 f (x) 的周期T = 8 .由 f (x 一 1)是奇函數(shù),

17、得f (0 一 1) = f (一1) = 0 .因?yàn)?f (x) 在一1,1上單調(diào)遞增,所以f (0) 0 ,所以 f (2019) = f (3) = f (一1) = 0, f (2020) = f (4) = 一f (0) 想 0 ,即 f (0) f (2019) f (2020) .故選 B.13.答案: 2x 一 y 一 1 = 0解析: f p(x) = 2x + 2ex + 2xex , f (0) = 一1 ,:函數(shù) f (x) 在點(diǎn) (0, 一1) 處的切線斜率k = f p(0) = 2 ,:所求的切線方程為 y 一 (一1) = 2(x 一 0) ,即 2x 一 y

18、一 1 = 0 .14.答案: 135。解析:由向量a = (1,一1)知|a |= 2 .又(2a + b) a ,則 (2a + b) .a = 0 ,即2a2 + a . b = 0,:a . b = 一2a2 = 一2 人 2 = 一4,:cosa,b= = 4 = 一 22 , :向量 a 與 b的夾角為135。.15.答案: 2 3解析:設(shè)P(x, y) ,則 由得x2 = c2 一 y2 ,代入式得c2 一 y2 + y2 = 1 亭 y2 = b4 亭| y |= b2 .a2 b2 c2 c:S = 1 | OF | . | y |= 1 人 c 人 b2 = 1 b2 =

19、6 ,POF 2 2 c 2:b2 = 12 ,又 b 0 ,:b = 2 3 .16.答案: _3,0解析:由函數(shù)f (x) = Asin(Ox +Q)(A 0,O 0,0 Q ) 的部分圖像,可得A = 2 ,23 人 2 = 5 + 1,求得O = .再根據(jù)五點(diǎn)作圖法可得, 人 (_1) +Q = 2k ,k = Z , 4 4 4:Q = 2k + , k =Z .又0 Q 10.828 ,1000人 (150人 350 _ 450人50)2600 人 400 人 200人 800:有 99.9%以上的把握認(rèn)為得分是否優(yōu)秀與文理科有關(guān).2 218.解析: (1)由題可知, b = =

20、= 2 ,1 2a _ 1 2 _ 11b _ b = 2 _ 2 = 2 _ 2 = 2 , n+1 n 2an+1 _ 1 2an _ 1 2 _ 1 _ 1 2an _ 12an所以數(shù)列b 是首項(xiàng)為 2,公差為 2 的等差數(shù)列,n所以b = 2 + (n _ 1) 人 2 = 2n .n由b = 2 得a = bn + 2 = 2n + 2 = n + 1 .n 2a - 1 n 2b 4n 2nn n(2)由(1)得 S = n(2 + 2n) = n(n + 1), n 2所以cn = (-1)n an + n = (-1)n = (-1)n (|( + n 1)| .n所以T =

21、c + c + c + + cn 1 2 3 n= - (|(1 + )| + (|( + )| - (|( + )| + + (- 1)n(|( + n 1)|= - 1 + (- 1)n 1 .n + 119.解析: (1)證明:易知tan 三BAE = , tan 三ABD = 2 ,222所以1 - tan 三BAE . tan 三ABD = 1 - 根 2 = 0 ,2故 三BAE + 三ABD = ,即 AE BD,2又 BD PE , PE 后 AE = E ,所以 BD 平面 PAE,又 PA 仁 平面 PAE,所以BD PA ,又 PA BC, BD 后 BC = B ,所以

22、 PA 平面ABCD.(2)由 PA 平面 ABCD,得 PA CD ,又CD AD, PA 后 AD = A,所以CD 平面 PAD,所以三CPD 為 PC 與平面 PAD 所成的角,則三CPD = 30o ,在RtCPD 中, CD = 2 , 三CPD = 30o ,所以 PD = 6 ,又 PA AD , 所以 PA = ( 6) 2 - 22 = 2 .以 A 為原點(diǎn), AB, AD, AP 的方向分別為x 軸、 y 軸、 z 軸的正方向,建立如圖所示的空間直 角坐標(biāo)系,則 B( 2,0,0), D(0,2,0), E( 2,1,0), P(0,0, 2) ,DP = (0, -2,

23、 2), DE = ( 2, -1,0) ,設(shè)平面 PDE 的法向量為n = (x, y, z) ,|lDE . n = 2x - y = 0,則(|DP . n = -2y + 2z = 0,取 x = 1 ,則 y = 2, z = 2 ,所以 n = (1, 2,2) ,易知平面 PAE 的一個(gè)法向量為BD = (- 2,2,0) ,n. BD 21所以cosn, BD= = ,| n | BD | 21由圖可知二面角A - PE - D為銳角,21所以二面角A - PE - D的余弦值為21 .20.解析: (1)由點(diǎn) P(x ,1)在拋物線上可得, 12 = 2px ,解得 x =

24、10 0 0 2p .由拋物線的定義可得| PF |= x + p = 1 + p = 5 ,0 2 2p 2 4整理得 2p2 - 5p + 2 = 0 ,解得 p = 2 或p = 1 (舍去).2故拋物線 C 的方程為 y2 = 4x .(2)由 E(t,4) 在拋物線 C 上可得42 = 4t ,解得 t = 4 ,所以E(4,4) ,直線 OE 的方程為 y = x .易知H(x , -y ) , x , x 均不為 0.1 1 1 2由題意知直線 l 的斜率存在且大于 0,設(shè)直線 l 的方程為 y = kx + 2(k 0) ,聯(lián)立,得消去 y,得 k2 x2 + (4k - 4)

25、x + 4 = 0 .則編 = (4k _ 4)2 _ 16k2 = 16 _ 32k 0 ,得 0 k 1 ,2所以x + x = 4 _ 4k , x x = 4 . 1 2 k2 1 2 k2由直線 OE 的方程為 y = x ,得 M(x , x ).1 1y ( x y )2 2易知直線 OB 的方程為 y = x2 ,故 N|(x1 , 2 )| .數(shù)形結(jié)合可知,要證| AM |=| MN | ,即證 2y = y + y ,M 1 N即證 x1 y2 + y = 2x ,即證 x y + x y = 2x x ,x1 1 1 2 2 1 1 22即證 (2k _ 2)x x +

26、2 (x + x )= 0 ,1 2 1 2則 (2k _ 2) 根 4 + 8 _ 8k = 0 ,此等式顯然成立,所以| AM |=| MN | .k 2 k 221.解析:(1)函數(shù)的定義域?yàn)?(0,+w) , f ,(x) = _ae_x + 1 = ex _ ax ,x xex(下面分 a 共 0 及00 恒成立, f (x) 在(0,+w) 上單調(diào)遞增.當(dāng)0 a 共 e 時(shí),令 g (x) = ex _ ax , g,(x) = ex _ a ,當(dāng)0 0 在 (0,+w) 上恒成立, g(x) g(0) = 1 .所以 f ,(x) 0 恒成立, f (x) 在 (0,+w) 上單

27、調(diào)遞增.當(dāng)1 a 共 e 時(shí),當(dāng)0 x ln a 時(shí), g,(x) ln a 時(shí), g,(x) 0 , g (x) 單調(diào)遞增,:g (x) 之 g (ln a) = eln a _ a ln a = a(1_ ln a) 之 0 ,:f ,(x) 之 0 (等號不恒成立), f (x) 在 (0,+w) 上單調(diào)遞增. 綜上,當(dāng)a 共e 時(shí), f (x) 在 (0,+w) 上單調(diào)遞增.(2)依題意,得 f ,(x )= f ,(x )= 0 ,1 2則(|ex1 _ ax1 = 0, 即(|ex1 = ax1 ,|lex2 _ ax2 = 0, |lex2 = ax2 ,兩式相除得, ex2 _x1 = x2 ,設(shè) x2 = t ,x x1 1則 t 1 , x = tx , e(t -1)x1 = t ,2 1:x = ln t , x = t ln t ,1 t - 1 2 t - 1:x + x =(t +1)ln t1 2 t - 1 .1設(shè) h(t) = (t + 1)ln t (t 1),則 h,(t) = t - t

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論