版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2022/9/11 School of Jet PropulsionBeihang University.FLUID MECHANICS2022/9/12 Chapter 1 Introduction 1.1 Preliminary Remarks When you think about it, almost everything on this planet either is a fluid or moves within or near a fluid. -Frank M. WhiteWhat is a fluid?2022/9/13The concept of a fluidA so
2、lid can resist a shear stress(剪切應(yīng)力)by a static deformation, a fluid can not.Any shear stress applied to a fluid, no matter how small, will result in motion of that fluid.The fluid moves and deforms continuously as long as the shear is applied.2022/9/14What is Fluid Mechanics Fluid Mechanics is the s
3、tudy of fluid either in motion (Fluid Dynamics 流體動(dòng)力學(xué)) or at rest(Fluid Statics 流體靜力學(xué)) and subsequent effects of the fluid upon the boundaries, which may be either solid surfaces or interfaces with other fluids.2022/9/15The famous collapse of the a Narrow Bridge in 1940Curved shoot (Banana shoot)Nosp
4、inSpinwhy2022/9/16Boeing 74770.764.4 19.41 (m) 395 000kgAn-225 8488.418.1 (m)600,000kg How can the airplane fly?Drag & Lift2022/9/172022/9/18The engine of a turbofan(渦扇) jet2022/9/19;2022/9/110History and Scope of Fluid MechanicsPre-history:Sailing ships with oars(櫓槳) and irrigation system were both
5、 known in prehistory2022/9/111Archimedes(285-212 BC)Parallelogram law for addition of vectors Law of buoyancy2022/9/112Leonardo da Vinci(1452-1519) * Equation of conservation of mass in one-dimensional steady flow* Experimentalist* Turbulence2022/9/113Isaac Newton(1642-1727)Laws of motionLaws of vis
6、cosity of Newtonian fluid2022/9/114 18th centuryMathematicians:Euler(歐拉): Euler equationBernoulli (伯努利) : Bernoulli equationFrictionless(無粘) flow solutionsDAlembert(達(dá)朗貝爾): DAlembert paradox(佯謬,疑題)Engineers: Hydraulics (水力學(xué))relaying on experimentChannels ,Ship resistance, Pipe flows,Wave turbinePitot
7、 Venturi Torricelli Poiseuille2022/9/11519th centuryNavier (1785-1836) & Stokes (1819-1905)N-S equation viscous flow solutionReynolds (1842-1912) TurbulenceFamous experiment on transition Reynolds Number2022/9/11620th centuryLudwig Prandtl (1875-1953)Boundary theory(1904)To be the single most import
8、ant tool in modern flow analysis.The father of modern fluid mechanicsVonkarman(1881-1963)I.taylor(1886-1975)Laid foundation for the present stateof the art in fluid mechanics2022/9/1171.2 The Fluid as a Continuum (連續(xù)介質(zhì))Density(密度)Elemental volume(流體微團(tuán)、流體質(zhì)點(diǎn))* Large enough in microscope(微觀)10-9mm3 of
9、air at standard conditions contains approximately 3107 molecules.So density is essentially a point function and fluid properties can be thought of as varying continually in space .* Small enough in macroscope(宏觀).Most engineering problems are concerned with physical dimensions much larger than this
10、limiting volume.2022/9/118The elemental volume must be small enough in macroscopeSuch a fluid is called a continuum, which simply means that its variation in properties is so smooth that the differential calculus can be used to analyze the substance.2022/9/1191.3 Some Properties of fluids1.viscosity
11、(粘性)* Definition: When a fluid is sheared(剪切), it begins to move. Subsequently, a pair of forces appear on the shear surface, which resists the shear motion of the fluid. This is called viscosityThis resistant force is shear stress.(剪切應(yīng)力,內(nèi)摩擦應(yīng)力)In fact, this shear motion of a fluid is a kind of defor
12、mation(變形)* The nature of viscosity:For liquid is cohesion(結(jié)合)(movie) For gas is the transport of momentum(動(dòng)量輸運(yùn))(movie)2022/9/120m : Coefficient of viscosity (粘性系數(shù))FT/L2n = m / r: Kinematic viscosity (運(yùn)動(dòng)學(xué)粘性系數(shù))L2/TVelocity gradient* Newtonian law of viscosity(牛頓粘性定律,牛頓內(nèi)摩擦定律)UUu(y)xyShear stressThe li
13、near fluid, which follow Newtonian resistance law,is called Newtonian flow. (牛頓流動(dòng)、牛頓流體)The velocity gradient is in fact a kind of deformation.Real fluid (Viscous) , Ideal fluid (Inviscid & Frictionless)2022/9/1212. Compressibility(壓縮性) pressible(不可壓): r = constMost liquid flows are treated as pressi
14、ble.Only 1 percent increase if pressure increase by 220Compressible(可壓縮): r = r (P.T)Gases can also be treated as pressible when their velocity is less than 0.3 Ma numbers3. State Relations for Gases Perfect-gas Law(理想氣體狀態(tài)方程)2022/9/1224.Thermal Conductivity(熱傳導(dǎo)) : heat flux in n direction per unit a
15、reak: coefficient of thermal conductivityT: temperature n: direction of heat transfer Fouriers law of heat conduction2022/9/1231.4 Two different points of view in analyzing problems in mechanics* The Eulerian view (歐拉觀點(diǎn))and the Lagrangian view (拉格朗日觀點(diǎn)) The Eulerian view is concerned with the field o
16、f flow, appropriate to fluid mechanics.The Lagrangian view follows an individual particle moving though the flow,appropriate to solid mechanics.The contrast of two frames2022/9/124* Flow classification(流動(dòng)分類)According to Eulerian view, any property is function of coordinates(space) and time. In Carte
17、sian system (直角坐標(biāo)系) ,it can be expressed asf(x,y,z,t)x,y,z,t: Eulerian variable component ( 歐拉變數(shù))f: Function of only one coordinate component, one-dimensional ( 一維 1-D). In the like manner, two-dimensional ( 二維 2-D) , three-dimensional ( 三維 3-D ) : Function of time unsteady (非定常)Otherwise steady (定常
18、) 2022/9/125OneTwo dimensionalThreeSteadyUnsteadyCompressible pressibleViscousInviscid2022/9/1261.5 Streamline(流線),Pathline(跡線) & Flowfield (流場(chǎng))* What is a streamline A streamline is the line everywhere tangent to the velocity vector at a given instant.2022/9/127 A pathline is the actual path traver
19、sed by a given fluid particles.For steady flow: Streamline = Pathline* What is a pathlinePathlines in steady flowPathlines in unsteady flow2022/9/128Flow Pattern (流型、流普、流線族)Stream surface(流面)& Streamtube (流管)Flow pattern : a set of streamlinesStreamsurface: a collection of all the streamlines passin
20、g through a line which is not a streamline.Stream line can not intersect(相交),except for singularity point(奇點(diǎn))Streamtube : a closed collection of streamlines.No flow across streamtube walls2022/9/129Flow field (流場(chǎng)) : In a given flow situation, the properties of the fluid are functions of position and
21、 time, namely space-time distributions of the fluid properties. 2022/9/130Streamline equation(流線方程)ds - Infinitesimal (無窮小)dydxds2022/9/131Example:Given the steady two-dimensional velocity distribution u=kx,v=-ky,w=0,where k is a positive constant.Compute and plot the streamlines of the flow,including direction.Solution: Since time (t) does not appear explicitly,the motion is steady,so that streamlines,pathlines will coincide.Since w=0,the motion is two-dimensional.Integrating:Hyperbolas(雙曲
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨沂科技職業(yè)學(xué)院《精細(xì)化學(xué)工藝學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 遼河石油職業(yè)技術(shù)學(xué)院《糧油食品加工工藝學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西信息應(yīng)用職業(yè)技術(shù)學(xué)院《食品質(zhì)量與安全控制》2023-2024學(xué)年第一學(xué)期期末試卷
- 江蘇工程職業(yè)技術(shù)學(xué)院《女性文學(xué)鑒賞》2023-2024學(xué)年第一學(xué)期期末試卷
- 華東政法大學(xué)《健康教育》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖北黃岡應(yīng)急管理職業(yè)技術(shù)學(xué)院《外國(guó)文學(xué)專題》2023-2024學(xué)年第一學(xué)期期末試卷
- 遵義醫(yī)藥高等專科學(xué)?!恫牧虾附有浴?023-2024學(xué)年第一學(xué)期期末試卷
- 珠海格力職業(yè)學(xué)院《外科學(xué)Ⅱ》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶青年職業(yè)技術(shù)學(xué)院《高等天然藥物化學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 中華女子學(xué)院《運(yùn)動(dòng)控制系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年軟件資格考試信息系統(tǒng)運(yùn)行管理員(初級(jí))(基礎(chǔ)知識(shí)、應(yīng)用技術(shù))合卷試卷及解答參考
- 第8課《列夫-托爾斯泰》公開課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)
- 人教版2024-2025學(xué)年七年級(jí)數(shù)學(xué)上冊(cè)計(jì)算題專項(xiàng)訓(xùn)專題09運(yùn)用運(yùn)算律簡(jiǎn)便運(yùn)算(計(jì)算題專項(xiàng)訓(xùn)練)(學(xué)生版+解析)
- GB 26134-2024乘用車頂部抗壓強(qiáng)度
- 2024年高中生物新教材同步必修第二冊(cè)學(xué)習(xí)筆記第3章 本章知識(shí)網(wǎng)絡(luò)
- (正式版)YS∕T 5040-2024 有色金屬礦山工程項(xiàng)目可行性研究報(bào)告編制標(biāo)準(zhǔn)
- 2024版軟包合同模板
- GB/T 36548-2024電化學(xué)儲(chǔ)能電站接入電網(wǎng)測(cè)試規(guī)程
- NB-T+31010-2019陸上風(fēng)電場(chǎng)工程概算定額
- JT-T-617.7-2018危險(xiǎn)貨物道路運(yùn)輸規(guī)則第7部分:運(yùn)輸條件及作業(yè)要求
- 2024土方運(yùn)輸居間合同范本
評(píng)論
0/150
提交評(píng)論