四邊形整章導(dǎo)學(xué)案教案(新湘教版)(前8課時)_第1頁
四邊形整章導(dǎo)學(xué)案教案(新湘教版)(前8課時)_第2頁
四邊形整章導(dǎo)學(xué)案教案(新湘教版)(前8課時)_第3頁
四邊形整章導(dǎo)學(xué)案教案(新湘教版)(前8課時)_第4頁
四邊形整章導(dǎo)學(xué)案教案(新湘教版)(前8課時)_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、長樂中學(xué)八年級數(shù)學(xué)導(dǎo)學(xué)訓(xùn)練案教案編制人:周浩雄審核人:日期:總課時數(shù):第11課時課題:多邊形第一課時內(nèi)角和教學(xué)目標1知道多邊形、多邊形的內(nèi)角、多邊形的對角線和正多邊形的有關(guān)概念2能夠解決與多邊形的對角線有關(guān)的問題3、培養(yǎng)學(xué)生解決實際問題的能力。教學(xué)重點:多邊形、多邊形的內(nèi)角、多邊形的對角線和正多邊形的有關(guān)概念教學(xué)難點:多邊形的內(nèi)角和一、引完成教材P34觀察二探閱讀教材P34至P35,完成下列問題:(1)在平面內(nèi),由一些線段_相接組成的_叫做多邊形。圖1中分別是什么多邊形?(2)多邊形_組成的角叫做多邊形的內(nèi)角。圖2中內(nèi)角有_。(3)多邊形的邊與它的的鄰邊的_組成的角叫做多邊形的外角。圖2中外角

2、有_。(4)連接多邊形_的兩個頂點的線段叫做多邊形的對角線。(5)_都相等,_都相等的多邊形叫做正多邊形。2、對應(yīng)練習(xí)(1)n邊形有_條邊,_個頂點,_個內(nèi)角。(2)圖3是_邊形,它的邊是_,頂點是_,內(nèi)角是_,若圖中多邊形是正多邊形,則_。(3)下列圖形不是凸多邊形的是()4、在直角三角形ABC中C900,BC=2,AB=4,求A的度數(shù).-1-三結(jié)多邊形的內(nèi)角和公式四.用【例題】例1、板書并講解教材例【練習(xí)】1、下列圖形中,是正多邊形的是()A、直角三角形B、等腰三角形C、長方形D、正方形2、九邊形的對角線有()A、25條B、31條C、27條D、30條3、過n邊形的一個頂點的所有對角線,把多

3、邊形分成8個三角形,則這個多邊形的邊數(shù)是_。4、一個多邊形的對角線的條數(shù)等于它的邊數(shù)的4倍,求這個多邊形的邊數(shù)。探究:畫出下列多邊形的對角線回答問題:(1)從四邊形的一個頂點出發(fā)可以畫_條對角線,把四邊形分成了個三角形;四邊形共有_條對角線(2)從五邊形的一個頂點出發(fā)可以畫_條對角線,把五邊形分成了個三角形;五邊形共有_條對角線(3)猜想:從n邊形的一個頂點出發(fā)可以畫_條對角線,把n分成了個三角形;n邊形共有_條對角線五.作業(yè)P36練習(xí)1、2題-2-長樂中學(xué)八年級數(shù)學(xué)導(dǎo)學(xué)訓(xùn)練案教案編制人:周浩雄審核人:日期:第12課時課題:多邊形第二課時外角和教學(xué)目標1知道多邊形的外角和定理;2運用多邊形內(nèi)角

4、和與外角和定理進行有關(guān)的計算3培養(yǎng)在實際生活中發(fā)現(xiàn)問題總結(jié)規(guī)律的意識和能力。教學(xué)重點:多邊形的外角和定理的應(yīng)用教學(xué)難點:多邊形的外角和定理的應(yīng)用一、引多邊形的外角和如圖在六邊形的每個頂點處各取一個外角,這些外角的和叫做六邊形的外角和六邊形的外角和等于多少?二探自學(xué)內(nèi)容:1、閱讀教材P37頁;2、完成自主學(xué)習(xí);六邊形的每個頂點處各取一個外角,這些外角叫做六邊形的外角和六邊形的外角和等于多少?問題:如果將六邊形換為n邊形(n是大于等于3的整數(shù)),結(jié)果還相同嗎?因此可得結(jié)論:.對應(yīng)練習(xí):1、七邊形的外角和是_;十二邊形的外角和是_;三角形的外角和是_.2、一個多邊形的每一個外角都等于36則這個多邊形

5、是_邊形.3、在每個內(nèi)角都相等的多邊形中,若一個外角是它相鄰內(nèi)角的,則這個_邊形.三結(jié)多邊形的外角和四.用1、一個多邊形的每一個外角都等于40,則它的邊數(shù)是_;一個多邊形的每一個內(nèi)角都等于140,則它的邊數(shù)是_.2、如果四邊形有一個角是直角,另外三個角的度數(shù)之比為2:3:4,-3-那么這三個內(nèi)角的度數(shù)分別為_.3、若一個多邊形的內(nèi)角和為1080,則它的邊數(shù)是_.當一個多邊形的邊數(shù)增加1時,它的內(nèi)角和增加_度.5、正十邊形的一個外角為_6、_邊形的內(nèi)角和與外角和相等7、已知一個多邊形的內(nèi)角和與外角和的差為1080,求這個多邊形的邊數(shù)。8、若一個多邊形的內(nèi)角和與外角和的比為7:2,求這個多邊形的邊

6、數(shù)。當堂檢測1、n邊形的內(nèi)角和等于_,九邊形的內(nèi)角和等于_。2、n邊形的外角和等于_,九邊形的外角和等于_。3、如果一個多邊形的每一個外角等于30,則這個多邊形的邊數(shù)是_。4、正五邊形的每一個外角等于_,每一個內(nèi)角等于_。5.如果十邊形的每個內(nèi)角都相等,那么它的每個內(nèi)角都等于_度,每個外角都等于_度。6、一個多邊形的外角和是它的內(nèi)角和的,這個多邊形是_邊形。7、多邊形每一個內(nèi)角都等于120,則從此多邊形一個頂點出發(fā)可引的對角線的條數(shù)是()A.5條B.4條C.3D.2條8、.若一個多邊形除了一個內(nèi)角外,其余各內(nèi)角之和是2570,則這個角是()A.90B.15C.120D.130五.作業(yè)P38練習(xí)

7、1、2題課后反思-4-長樂中學(xué)八年級數(shù)學(xué)導(dǎo)學(xué)案教案編制人:周浩雄審核人:日期:總課時數(shù):第13課時課題:平行四邊形的性質(zhì)第一課時教學(xué)目標1理解并掌握平行四邊形的概念和平行四邊形對邊、對角相等的性質(zhì)2、會用平行四邊形的性質(zhì)解決簡單的平行四邊形的計算問題,并會進行有關(guān)的論證教學(xué)重點:平行四邊形的概念和平行四邊形對邊、對角相等的性質(zhì)教學(xué)難點:用平行四邊形的性質(zhì)解決簡單的平行四邊形的計算問題一、引任意作一個四邊形,依次連接它四邊的中點,你能得到一個怎樣的四邊形?結(jié)論對所有的四邊形都成立嗎?任意的一個四邊形,依次連接其四邊的中點,所得到的四邊形是平行四邊形對于所有的四邊形,此結(jié)論都成立為什么呢?你能用推

8、理的方法說明它嗎?二探自學(xué)課本P40P41,1.有兩組對邊_的四邊形叫平形四邊形,平行四邊形用“_”表示,平行四邊形ABCD記作_。eqoac(,2.)如圖ABCD中,對邊有_組,分別是_,對角有_組,分別是_,對角線有_條,它們是_。你能歸納ABCD的邊、角各有什么關(guān)系嗎?并證明你的結(jié)論。三結(jié)本節(jié)課我們主要利用前面學(xué)過的公理和定理來證明了平行四邊形的性質(zhì)四.用【例題】如圖,ADBC,AECD,BD平分ABC,求證AB=CE.【練習(xí)】-5-填空:1在ABCD中,A=50,則B=度,C=度,D=度兩組對邊分別_的四邊形叫做平行四邊形它用符號“”表示,平行四邊形ABCD記作_。2平行四邊形的兩組對

9、邊分別_且_;平行四邊形的兩組對角分別_;兩鄰角_;平行四邊形的對角線_;平行四邊形的面積底邊長_3eqoac(,在)ABCD中,若AB40,則A_,B_4若平行四邊形周長為54cm,兩鄰邊之差為5cm,則這兩邊的長度分別為_5eqoac(,若)ABCD的對角線AC平分DAB,則對角線AC與BD的位置關(guān)系是_6如圖,ABCD中,CEAB,垂足為E,如果A115,則BCE_6題圖7如圖,在ABCD中,DBDC、A65,CEBD于E,則BCE_7題圖五.作業(yè)P42練習(xí)1、2題板書設(shè)計平行四邊形的性質(zhì)定理:平行四邊形的性質(zhì)例題練習(xí)-6-長樂中學(xué)八年級數(shù)學(xué)導(dǎo)學(xué)案教案編制人:周浩雄審核人:日期:總課時數(shù)

10、:第14課時課題:平行四邊形的性質(zhì)第2課時教學(xué)目標1、理解平行四邊形中心對稱的特征,掌握平行四邊形對角線互相平分的性質(zhì)2、能綜合運用平行四邊形的性質(zhì)解決平行四邊形的有關(guān)計算問題,和簡單的證明題教學(xué)重點:平行四邊形對角線互相平分的性質(zhì)教學(xué)難點:綜合運用平行四邊形的性質(zhì)解決平行四邊形的有關(guān)計算問題一、引上節(jié)課我們研究了平行四邊形的性質(zhì)定理下面我們來做一練習(xí)以復(fù)習(xí)上節(jié)課的知識(如上圖;1)若四邊形ABCD是平行四邊形,則A_,B_;(2)若四邊形ABCD是平行四邊形,則AB_,BC_;(3)若四邊形ABCD是平行四邊形,則AB_CD;二探自學(xué)課本P42探究1證明;平行四邊形的對角線互相平分如下圖,已

11、知平行四邊形ABCD中,對角線AC、BD相交于點O求證:OAOC,OBOD2證明:夾在兩條平行線間的平行線段相等l如圖,已知l1/l2,AB、CD是l1、2之間的任意平行線段求證:ABCD三結(jié)-7-平行四邊形的對角線互相平分四.用例題:EF例1eqoac(,、)ABCD中,、在AC上,四邊形DEBF是平行四邊形.求證:AE=CF.DFCEAB例2、已知:如下圖,ABCD的對角AC,BD交與點O.E,F(xiàn)分別是OA、OC的中點。求證:OBEODF.ADEOF練習(xí)BC1平行四邊形一條對角線分一個內(nèi)角為25和35,則4個內(nèi)角分別為_eqoac(,2)ABCD中,對角線AC和BD交于O,若AC8,BD6

12、,則邊AB長的取值范圍是_3平行四邊形周長是40cm,則每條對角線長不能超過_cmeqoac(,4)如圖,在ABCD中,AE、AF分別垂直于BC、CD,垂足為E、F,若EAF30,AB6,AD10,則CD_;AB與CD的距離為_;AD與BC的距離為_;D_eqoac(,5)ABCD的周長為60cm,其對角線交于O點,若AOB的周長比BOC的周長多10cm,則AB_,BC_五.作業(yè)P44練習(xí)1、2題板書設(shè)計平行四邊形的性質(zhì)定理:平行四邊形的性質(zhì)例題練習(xí)-8-長樂中學(xué)八年級數(shù)學(xué)導(dǎo)學(xué)案教案編制人:周浩雄審核人:日期:總課時數(shù):第15課時課題:多邊形第一課時內(nèi)角和教學(xué)目標1在探索平行四邊形的判別條件中

13、,理解并掌握用邊、對角線來判定平行四邊形的方法2會綜合運用平行四邊形的判定方法和性質(zhì)來解決問題教學(xué)重點:平行四邊形的判定方法及應(yīng)用教學(xué)難點:平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用一、引小明的父親手中有一些木條,他想通過適當?shù)臏y量、割剪,釘制一個平行四邊形框架,你能幫他想出一些辦法來嗎?二探閱讀教材P44至P45利用手中的學(xué)具硬紙板條,通過觀察、測量、猜想、驗證、探索構(gòu)成平行四邊形的條件,思考并探討:(1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?(2)你怎樣驗證你搭建的四邊形一定是平行四邊形?(3)你能說出你的做法及其道理嗎?(4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用

14、文字語言表述出來嗎?(5)你還能找出其他方法嗎?從探究中得到:平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。證一證平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。證明:(畫出圖形)-9-平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。證明:(畫出圖形)三結(jié)兩組對邊分別相等的四邊形是平行四邊形。對角線互相平分的四邊形是平行四邊形。四.用【例題】例、已知:如圖所示,在ABCD中,E、F分別為AB、CD的中點,求證四邊形AECF是平行四邊形.【練習(xí)】1、已知:四邊形ABCD中,ADBC,要使四邊形ABCD為平行

15、四邊形,需要增加條件.(只需填上一個你認為正確的即可).2、如圖所示,在ABCD中,E,F分別是對角線BD上的兩點,且BE=DF,要證明四邊形AECF是平行四邊形,最簡單的方法是根據(jù)來證明.六.作業(yè)P46練習(xí)1、2題板書設(shè)計平行四邊形的性質(zhì)定理:平行四邊形的性質(zhì)例題練習(xí)教學(xué)反思-10-長樂中學(xué)八年級數(shù)學(xué)導(dǎo)學(xué)案教案編制人:周浩雄審核人:日期:第16課時課題:平行四邊形的判定第二課時教學(xué)目標1掌握用一組對邊平行且相等來判定平行四邊形的方法2會綜合運用平行四邊形的四種判定方法和性質(zhì)來證明問題教學(xué)重點:掌握用一組對邊平行且相等來判定平行四邊形的方法教學(xué)難點:會綜合運用平行四邊形的四種判定方法和性質(zhì)來證

16、明問題一、引平行四邊形的判定方法有那些?取兩根等長的木條AB、CD,將它們平行放置,再用兩根木條BC、AD加固,得到的四邊形ABCD是平行四邊形嗎?二探自學(xué)內(nèi)容:1、閱讀教材P46頁;2、完成自主學(xué)習(xí);【例題】已知:如圖,ABCD中,E、F分別是AD、BC的中點,求證:BE=DFAEDBFC已知:如圖,ABCD中,E、F分別是AC上兩點,且BEAC于E,DFAC于F求證:四邊形BEDF是平行四邊-11-三結(jié)師生共同小結(jié)平行四邊形的判定方法四.用1、能判定一個四邊形是平行四邊形的條件是()(A)一組對邊平行,另一組對邊相等(B)一組對邊平行,一組對角互補(C)一組對角相等,一組鄰角互補(D)一組

17、對角相等,另一組對角互補2、能判定四邊形ABCD是平行四邊形的題設(shè)是()(A)ADBC,ABCD(B)AB,CD(C)ABBC,ADDC(D)ABCD,CDAB3、能判定四邊形ABCD是平行四邊形的條件是:ABCD的值為()(A)1234(B)1423(C)1221(D)12124、如圖,E、F分別是ABCD的邊AB、CD的中點,則圖中平行四邊形的個數(shù)共有()(A)2個(B)3個(C)4個(D)5個5、如圖,ABCD中,對角線AC、BD交于點O,將AOD平移至BEC的位置,則圖中與OA相等的其他線段有()(A)1條(B)2條(C)3條(D)4條五.作業(yè)P48練習(xí)1、2題平行四邊形的判定平行四邊

18、形的判定1、2例題練習(xí)平行四邊形的判定3、4-12-長樂中學(xué)八年級數(shù)學(xué)導(dǎo)學(xué)案教案編制人:周浩雄審核人:日期:總課時數(shù):第17課時課題:平行四邊形性質(zhì)與判定練習(xí)課教學(xué)目標1、訓(xùn)練掌握平行四邊形的性質(zhì)與判定2、能綜合運用平行四邊形的性質(zhì)和判定解決平行四邊形的有關(guān)計算問題,和簡單的證明題教學(xué)重點:訓(xùn)練掌握平行四邊形的性質(zhì)與判定教學(xué)難點:綜合運用平行四邊形的性質(zhì)和判定解決平行四邊形的有關(guān)計算問題一、引師生一起回顧平行四邊形的性質(zhì)與判定二探1、如圖,平行四邊形ABCD中,AB3,BC5,AC的垂直平分線交AD于E,則CDE的周長是()68AED910BC2、在MBN中,BM6,點A,C,D分別在MB,B

19、N,NM上,四邊形ABCDD為平行四邊形,NDCMDA,ABCD的周長是()NC24181612MAB三結(jié)平行四邊形的性質(zhì)及判定四.用【例題】例1、已知:如圖,在四邊形ABCD中,AC與BD相交于點O,ABCD,AOCO求證:四邊形ABCD是平行四邊形ADOBC-13-例2、如圖,在平行四邊形ABCD中,AC,BD相交于點O下列結(jié)論中正確的個數(shù)有()結(jié)論:OAOC,BADBCD,ACBD,BADABC1801個2個3個4個DOC【練習(xí)】AB1、如圖,在四邊形ABCD中,ABCD,BCAD,若A110,則C_AD2、如圖,在ABCD中,AD5,AB3,AE平分BAD交BC邊于點E,則線段BE,E

20、C的長度分別為()2和33和24和11和43、如圖,ABCD的周長是28cm,ABC的周長是22cm,則AC的長為()BBCADECAD6cm12cm4cm8cmBC4、如圖,已知四邊形紙片ABCD,現(xiàn)需將該紙片剪拼成一個與它面積相等的平行四邊形紙片如果限定裁剪線最多有兩條,能否做到:(用“能”或“不能”填空)若填“能”,請確定裁剪線的位置,并說明拼接方法;若填“不能”,請簡要說明理由HDA22FEE34答案:能3DHA11F34BCBCGG五.作業(yè)P49A組1到6題板書設(shè)計平行四邊形的性質(zhì)與判定定理:平行四邊形的性質(zhì)與判定例題練習(xí)-14-長樂中學(xué)八年級數(shù)學(xué)導(dǎo)學(xué)案教案編制人:周浩雄審核人:日期:總課時數(shù):第18課時課題:平行四邊形性質(zhì)與判定練習(xí)課教學(xué)目標1、訓(xùn)練掌握平行四邊形的性質(zhì)與判定2、能綜合運用平行四邊形的性質(zhì)和判定解決平行四邊形的有關(guān)計算問題,和簡單的證明題教學(xué)重點:訓(xùn)練掌握平行四邊形的性質(zhì)與判定教學(xué)難點:綜合運用平行四邊形的性質(zhì)和判定解決平行四邊形的有關(guān)計算問題一、引師生一起回顧平行四邊形的性質(zhì)與判定二探1、如圖,在平行四邊形ABCD中,E是AD邊上的中點若ABE=EBC,AB=2,則平行四邊形ABCD的周長是2、如圖,在錯誤!未找到引用源。中,AD錯誤!未找到引用源。與錯誤!未找到O引用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論