2022屆江西省南昌、南昌二十等四校高三(最后沖刺)數(shù)學(xué)試卷含解析_第1頁
2022屆江西省南昌、南昌二十等四校高三(最后沖刺)數(shù)學(xué)試卷含解析_第2頁
2022屆江西省南昌、南昌二十等四校高三(最后沖刺)數(shù)學(xué)試卷含解析_第3頁
2022屆江西省南昌、南昌二十等四校高三(最后沖刺)數(shù)學(xué)試卷含解析_第4頁
2022屆江西省南昌、南昌二十等四校高三(最后沖刺)數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(shù),若函數(shù)的極大值點從小到大依次記為,并記相應(yīng)的極大值為,則的值為( )ABCD2算數(shù)書竹簡于上世紀八十年代在湖北省江陵縣張家山出土,這是我國現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍.其中記載

2、有求“囷蓋”的術(shù):“置如其周,令相承也.又以高乘之,三十六成一”.該術(shù)相當(dāng)于給出了由圓錐的底面周長與高,計算其體積的近似公式.它實際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當(dāng)于將圓錐體積公式中的圓周率近似取為( )ABCD3已知四棱錐中,平面,底面是邊長為2的正方形,為的中點,則異面直線與所成角的余弦值為( )ABCD4已知函數(shù)f(x)sin2x+sin2(x),則f(x)的最小值為( )ABCD5已知函數(shù),若不等式對任意的恒成立,則實數(shù)k的取值范圍是( )ABCD6已知雙曲線的一條漸近線傾斜角為,則( )A3BCD7設(shè)且,則下列不等式成立的是( )ABCD8在復(fù)平面內(nèi),復(fù)數(shù)z=

3、i對應(yīng)的點為Z,將向量繞原點O按逆時針方向旋轉(zhuǎn),所得向量對應(yīng)的復(fù)數(shù)是( )ABCD9已知集合,則全集則下列結(jié)論正確的是( )ABCD10在四面體中,為正三角形,邊長為6,則四面體的體積為( )ABC24D11已知函數(shù)是定義域為的偶函數(shù),且滿足,當(dāng)時,則函數(shù)在區(qū)間上零點的個數(shù)為( )A9B10C18D2012已知,則a,b,c的大小關(guān)系為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知拋物線C:y2=4x的焦點為F,準線為l,P為C上一點,PQ垂直l于點Q,M,N分別為PQ,PF的中點,MN與x軸相交于點R,若NRF=60,則|FR|等于_.14點到直線的距離為_15已知實

4、數(shù) 滿足,則的最大值為_.16如圖,半球內(nèi)有一內(nèi)接正四棱錐,該四棱錐的體積為,則該半球的體積為_. 三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)設(shè)函數(shù)f(x)=sin(2x-(I)求f(x)的最小正周期;(II)若(6,)且f(18(12分)某公園準備在一圓形水池里設(shè)置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,兩點為噴泉,圓心為的中點,其中米,半徑米,市民可位于水池邊緣任意一點處觀賞(1)若當(dāng)時,求此時的值;(2)設(shè),且(i)試將表示為的函數(shù),并求出的取值范圍;(ii)若同時要求市民在水池邊緣任意一點處觀賞噴泉時,觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值

5、19(12分)對于正整數(shù),如果個整數(shù)滿足,且,則稱數(shù)組為的一個“正整數(shù)分拆”.記均為偶數(shù)的“正整數(shù)分拆”的個數(shù)為均為奇數(shù)的“正整數(shù)分拆”的個數(shù)為.()寫出整數(shù)4的所有“正整數(shù)分拆”;()對于給定的整數(shù),設(shè)是的一個“正整數(shù)分拆”,且,求的最大值;()對所有的正整數(shù),證明:;并求出使得等號成立的的值.(注:對于的兩個“正整數(shù)分拆”與,當(dāng)且僅當(dāng)且時,稱這兩個“正整數(shù)分拆”是相同的.)20(12分)如圖,在矩形中,點分別是線段的中點,分別將沿折起,沿折起,使得重合于點,連結(jié).()求證:平面平面;()求直線與平面所成角的正弦值.21(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時,如果方程有兩個不

6、等實根,求實數(shù)t的取值范圍,并證明.22(10分)如圖,四棱錐中,四邊形是矩形,為正三角形,且平面平面,、分別為、的中點.(1)證明:平面平面;(2)求二面角的余弦值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】對此分段函數(shù)的第一部分進行求導(dǎo)分析可知,當(dāng)時有極大值,而后一部分是前一部分的定義域的循環(huán),而值域則是每一次前面兩個單位長度定義域的值域的2倍,故此得到極大值點的通項公式,且相應(yīng)極大值,分組求和即得【詳解】當(dāng)時,顯然當(dāng)時有,經(jīng)單調(diào)性分析知為的第一個極值點又時,均為其極值點函數(shù)不能在端點處取得極值,對應(yīng)極值,故選

7、:C【點睛】本題考查基本函數(shù)極值的求解,從函數(shù)表達式中抽離出相應(yīng)的等差數(shù)列和等比數(shù)列,最后分組求和,要求學(xué)生對數(shù)列和函數(shù)的熟悉程度高,為中檔題2C【解析】將圓錐的體積用兩種方式表達,即,解出即可.【詳解】設(shè)圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點睛】本題利用古代數(shù)學(xué)問題考查圓錐體積計算的實際應(yīng)用,考查學(xué)生的運算求解能力、創(chuàng)新能力.3B【解析】由題意建立空間直角坐標系,表示出各點坐標后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標系,由題意:,為的中點,.,異面直線與所成角的余弦值為即為.故選:B.【點睛】本題考查了空間向量的應(yīng)用,考查了空間想象能力,

8、屬于基礎(chǔ)題.4A【解析】先通過降冪公式和輔助角法將函數(shù)轉(zhuǎn)化為,再求最值.【詳解】已知函數(shù)f(x)sin2x+sin2(x),=,=,因為,所以f(x)的最小值為.故選:A【點睛】本題主要考查倍角公式及兩角和與差的三角函數(shù)的逆用,還考查了運算求解的能力,屬于中檔題.5A【解析】先求出函數(shù)在處的切線方程,在同一直角坐標系內(nèi)畫出函數(shù)和的圖象,利用數(shù)形結(jié)合進行求解即可.【詳解】當(dāng)時,所以函數(shù)在處的切線方程為:,令,它與橫軸的交點坐標為.在同一直角坐標系內(nèi)畫出函數(shù)和的圖象如下圖的所示:利用數(shù)形結(jié)合思想可知:不等式對任意的恒成立,則實數(shù)k的取值范圍是.故選:A【點睛】本題考查了利用數(shù)形結(jié)合思想解決不等式恒

9、成立問題,考查了導(dǎo)數(shù)的應(yīng)用,屬于中檔題.6D【解析】由雙曲線方程可得漸近線方程,根據(jù)傾斜角可得漸近線斜率,由此構(gòu)造方程求得結(jié)果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,解得:.故選:.【點睛】本題考查根據(jù)雙曲線漸近線傾斜角求解參數(shù)值的問題,關(guān)鍵是明確直線傾斜角與斜率的關(guān)系;易錯點是忽略方程表示雙曲線對于的范圍的要求.7A【解析】 項,由得到,則,故項正確;項,當(dāng)時,該不等式不成立,故項錯誤;項,當(dāng),時,即不等式不成立,故項錯誤;項,當(dāng),時,即不等式不成立,故項錯誤綜上所述,故選8A【解析】由復(fù)數(shù)z求得點Z的坐標,得到向量的坐標,逆時針旋轉(zhuǎn),得到向量的坐標,則對應(yīng)的復(fù)數(shù)

10、可求.【詳解】解:復(fù)數(shù)z=i(i為虛數(shù)單位)在復(fù)平面中對應(yīng)點Z(0,1),(0,1),將繞原點O逆時針旋轉(zhuǎn)得到,設(shè)(a,b),則,即,又,解得:,對應(yīng)復(fù)數(shù)為.故選:A.【點睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.9D【解析】化簡集合,根據(jù)對數(shù)函數(shù)的性質(zhì),化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結(jié)論.【詳解】由,則,故,由知,因此,故選:D【點睛】本題考查集合運算以及集合間的關(guān)系,求解不等式是解題的關(guān)鍵,屬于基礎(chǔ)題.10A【解析】推導(dǎo)出,分別取的中點,連結(jié),則,推導(dǎo)出,從而,進而四面體的體積為,由此能求出結(jié)果.【詳解】解: 在四面體中,為等邊三角形,邊長為6,分別取

11、的中點,連結(jié),則,且,平面,平面,四面體的體積為:.故答案為:.【點睛】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力.11B【解析】由已知可得函數(shù)f(x)的周期與對稱軸,函數(shù)F(x)f(x)在區(qū)間上零點的個數(shù)等價于函數(shù)f(x)與g(x)圖象在上交點的個數(shù),作出函數(shù)f(x)與g(x)的圖象如圖,數(shù)形結(jié)合即可得到答案.【詳解】函數(shù)F(x)f(x)在區(qū)間上零點的個數(shù)等價于函數(shù)f(x)與g(x)圖象在上交點的個數(shù),由f(x)f (2x),得函數(shù)f(x)圖象關(guān)于x1對稱,f(x)為偶函數(shù),取xx+2,可得f(x+2)f(x)f(x),得函數(shù)周期為2.又當(dāng)x

12、0,1時,f(x)x,且f(x)為偶函數(shù),當(dāng)x1,0時,f(x)x,g(x),作出函數(shù)f(x)與g(x)的圖象如圖:由圖可知,兩函數(shù)圖象共10個交點,即函數(shù)F(x)f(x)在區(qū)間上零點的個數(shù)為10.故選:B.【點睛】本題考查函數(shù)的零點與方程根的關(guān)系,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,屬于中檔題.12D【解析】與中間值1比較,可用換底公式化為同底數(shù)對數(shù),再比較大小【詳解】,又,即,故選:D.【點睛】本題考查冪和對數(shù)的大小比較,解題時能化為同底的化為同底數(shù)冪比較,或化為同底數(shù)對數(shù)比較,若是不同類型的數(shù),可借助中間值如0,1等比較二、填空題:本題共4小題,每小題5分,共20分。132【解

13、析】由題意知:,.由NRF=60,可得為等邊三角形,MFPQ,可得F為HR的中點,即求.【詳解】不妨設(shè)點P在第一象限,如圖所示,連接MF,QF.拋物線C:y2=4x的焦點為F,準線為l,P為C上一點,.M,N分別為PQ,PF的中點,PQ垂直l于點Q,PQ/OR,NRF=60,為等邊三角形,MFPQ,易知四邊形和四邊形都是平行四邊形,F(xiàn)為HR的中點,故答案為:2.【點睛】本題主要考查拋物線的定義,屬于基礎(chǔ)題.142【解析】直接根據(jù)點到直線的距離公式即可求出。【詳解】依據(jù)點到直線的距離公式,點到直線的距離為?!军c睛】本題主要考查點到直線的距離公式的應(yīng)用。15【解析】作出不等式組所表示的平面區(qū)域,將

14、目標函數(shù)看作點與可行域的點所構(gòu)成的直線的斜率,當(dāng)直線過時,直線的斜率取得最大值,代入點A的坐標可得答案.【詳解】畫出二元一次不等式組所表示的平面區(qū)域,如下圖所示,由得點,目標函數(shù)表示點與可行域的點所構(gòu)成的直線的斜率,當(dāng)直線過時,直線的斜率取得最大值,此時的最大值為.故答案為:. 【點睛】本題考查求目標函數(shù)的最值,關(guān)鍵在于明確目標函數(shù)的幾何意義,屬于中檔題.16【解析】由題意可知半球的半徑與正四棱錐的高相等,可得正四棱錐的棱與半徑的關(guān)系,進而可寫出半球的半徑與四棱錐體積的關(guān)系,進而求得結(jié)果.【詳解】設(shè)所給半球的半徑為,則四棱錐的高,則,由四棱錐的體積,半球的體積為:.【方法點睛】涉及球與棱柱、棱

15、錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17 (I);(II)-【解析】(I)化簡得到fx(II) f(2)=2sin【詳解】(I) f(x)=2sin2x+(II) f(2)=2sin(6,),故+故+12sin(2+【點睛】本題考查了三角函數(shù)的周期,三角恒等變換,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.18 (1);

16、(2)(i),;(ii).【解析】(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,兩式相加可得所求解析式(ii)在中,由余弦定理可得,根據(jù)的最大值不小于可得關(guān)于的不等式,解不等式可得所求【詳解】(1)在中,由正弦定理得,所以,即(2)(i)在中,由余弦定理得,在中,由余弦定理得,又所以,即又,解得,所以所求關(guān)系式為,(ii)當(dāng)觀賞角度的最大時,取得最小值在中,由余弦定理可得,因為的最大值不小于,所以,解得,經(jīng)驗證知,所以即兩處噴泉間距離的最小值為【點睛】本題考查解三角形在實際中的應(yīng)用,解題時要注意把條件轉(zhuǎn)化為三角形的邊或角,然后借助正余弦定理進行求解解題時要注意三角形邊角關(guān)系的運用,

17、同時還要注意所得結(jié)果要符合實際意義19 () ,;() 為偶數(shù)時,為奇數(shù)時,;()證明見解析,【解析】()根據(jù)題意直接寫出答案.()討論當(dāng)為偶數(shù)時,最大為,當(dāng)為奇數(shù)時,最大為,得到答案.() 討論當(dāng)為奇數(shù)時,至少存在一個全為1的拆分,故,當(dāng)為偶數(shù)時, 根據(jù)對應(yīng)關(guān)系得到,再計算,得到答案.【詳解】()整數(shù)4的所有“正整數(shù)分拆”為:,.()當(dāng)為偶數(shù)時,時,最大為;當(dāng)為奇數(shù)時,時,最大為;綜上所述:為偶數(shù),最大為,為奇數(shù)時,最大為.()當(dāng)為奇數(shù)時,至少存在一個全為1的拆分,故;當(dāng)為偶數(shù)時,設(shè)是每個數(shù)均為偶數(shù)的“正整數(shù)分拆”,則它至少對應(yīng)了和的均為奇數(shù)的“正整數(shù)分拆”,故.綜上所述:.當(dāng)時,偶數(shù)“正整

18、數(shù)分拆”為,奇數(shù)“正整數(shù)分拆”為,;當(dāng)時,偶數(shù)“正整數(shù)分拆”為,奇數(shù)“正整數(shù)分拆”為,故;當(dāng)時,對于偶數(shù)“正整數(shù)分拆”,除了各項不全為的奇數(shù)拆分外,至少多出一項各項均為的“正整數(shù)分拆”,故.綜上所述:使成立的為:或.【點睛】本土考查了數(shù)列的新定義問題,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.20()詳見解析;().【解析】()根據(jù),可得平面,故而平面平面()過作于,則可證平面,故為所求角,在中利用余弦定理計算,再計算【詳解】解:()因為,平面,平面所以平面,又平面,所以平面平面;()過作于,則由平面,且平面知,所以平面,從而是直線與平面所成角.因為, 所以,從而.【點睛】本題考查了面面垂直的判定,考查直線與平面所成角的計算,屬于中檔題21(1)當(dāng)時,的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;當(dāng)時,的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;(2),證明見解析.【解析】(1)求出,對分類討論

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論