北京市房山區(qū)達標名校2022年中考試題猜想數(shù)學試卷含解析_第1頁
北京市房山區(qū)達標名校2022年中考試題猜想數(shù)學試卷含解析_第2頁
北京市房山區(qū)達標名校2022年中考試題猜想數(shù)學試卷含解析_第3頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列各類數(shù)中,與數(shù)軸上的點存在一一對應關系的是()A.有理數(shù)B.實數(shù)C.分數(shù)D.整數(shù)2.將分別標有“孔”“孟”“之”“鄉(xiāng)”漢字的四個小球裝在一個不透明的口袋中,這些球除漢字外無其他差別,每次摸球前先攪拌均勻.隨機摸出一球,不放回;再隨機摸出一球.兩次摸出的球上的漢字能組成“孔孟”的概率是()A. B. C. D.3.分式的值為0,則x的取值為()A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-14.如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,PE,PF分別交AB,AC于點E,F(xiàn),給出下列四個結論:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四邊形AEPF,上述結論正確的有()A.1個 B.2個 C.3個 D.4個5.如圖是由兩個小正方體和一個圓錐體組成的立體圖形,其主視圖是()A. B. C. D.6.若關于x的一元一次不等式組無解,則a的取值范圍是()A.a(chǎn)≥3 B.a(chǎn)>3 C.a(chǎn)≤3 D.a(chǎn)<37.如圖,一段拋物線:y=﹣x(x﹣5)(0≤x≤5),記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉(zhuǎn)180°得C2,交x軸于點A2;將C2繞點A2旋轉(zhuǎn)180°得C3,交x軸于點A3;…如此進行下去,得到一“波浪線”,若點P(2018,m)在此“波浪線”上,則m的值為(

)A.4 B.﹣4 C.﹣6 D.68.將一副三角尺(在中,,,在中,,)如圖擺放,點為的中點,交于點,經(jīng)過點,將繞點順時針方向旋轉(zhuǎn)(),交于點,交于點,則的值為()A. B. C. D.9.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,函數(shù)y=(k<0)的圖象經(jīng)過點B,則k的值為()A.﹣12 B.﹣32 C.32 D.﹣3610.如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.125二、填空題(共7小題,每小題3分,滿分21分)11.計算:2﹣1+=_____.12.計算:|﹣5|﹣=_____.13.已知且,則=__________.14.如圖,⊙O的半徑為5cm,圓心O到AB的距離為3cm,則弦AB長為_____cm.15.已知⊙O半徑為1,A、B在⊙O上,且,則AB所對的圓周角為__o.16.出售某種手工藝品,若每個獲利x元,一天可售出個,則當x=_________元,一天出售該種手工藝品的總利潤y最大.17.計算:.三、解答題(共7小題,滿分69分)18.(10分)如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF(1)判斷AF與⊙O的位置關系并說明理由;(2)若⊙O的半徑為4,AF=3,求AC的長.19.(5分)如圖,在△ABC中,CD⊥AB于點D,tanA=2cos∠BCD,(1)求證:BC=2AD;(2)若cosB=,AB=10,求CD的長.20.(8分)在國家的宏觀調(diào)控下,某市的商品房成交價由去年10月份的14000元/下降到12月份的11340元/.求11、12兩月份平均每月降價的百分率是多少?如果房價繼續(xù)回落,按此降價的百分率,你預測到今年2月份該市的商品房成交均價是否會跌破10000元/?請說明理由21.(10分)如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A作BC的平行線交CE的延長線與F,且AF=BD,連接BF。求證:D是BC的中點;如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論。22.(10分)如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點,(1)求證:△ACE≌△BCD;(2)若DE=13,BD=12,求線段AB的長.23.(12分)如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點A(m,3)、B(–6,n),與x軸交于點C.(1)求一次函數(shù)y=kx+b的關系式;(2)結合圖象,直接寫出滿足kx+b>的x的取值范圍;(3)若點P在x軸上,且S△ACP=,求點P的坐標.24.(14分)漳州市某中學對全校學生進行文明禮儀知識測試,為了解測試結果,隨機抽取部分學生的成績進行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).請你根據(jù)圖中所給的信息解答下列問題:請將以上兩幅統(tǒng)計圖補充完整;若“一般”和“優(yōu)秀”均被視為達標成績,則該校被抽取的學生中有_▲人達標;若該校學生有1200人,請你估計此次測試中,全校達標的學生有多少人?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)實數(shù)與數(shù)軸上的點存在一一對應關系解答.【詳解】實數(shù)與數(shù)軸上的點存在一一對應關系,故選:B.【點睛】本題考查了實數(shù)與數(shù)軸上點的關系,每一個實數(shù)都可以用數(shù)軸上唯一的點來表示,反過來,數(shù)軸上的每個點都表示一個唯一的實數(shù),也就是說實數(shù)與數(shù)軸上的點一一對應.2、B【解析】

根據(jù)簡單概率的計算公式即可得解.【詳解】一共四個小球,隨機摸出一球,不放回;再隨機摸出一球一共有12中可能,其中能組成孔孟的有2種,所以兩次摸出的球上的漢字能組成“孔孟”的概率是.故選B.考點:簡單概率計算.3、A【解析】

分式的值為2的條件是:(2)分子等于2;(2)分母不為2.兩個條件需同時具備,缺一不可.據(jù)此可以解答本題.【詳解】∵原式的值為2,∴,∴(x-2)(x+3)=2,即x=2或x=-3;又∵|x|-2≠2,即x≠±2.∴x=-3.故選:A.【點睛】此題考查的是對分式的值為2的條件的理解,該類型的題易忽略分母不為2這個條件.4、C【解析】

利用“角邊角”證明△APE和△CPF全等,根據(jù)全等三角形的可得AE=CF,再根據(jù)等腰直角三角形的定義得到△EFP是等腰直角三角形,根據(jù)全等三角形的面積相等可得△APE的面積等于△CPF的面積相等,然后求出四邊形AEPF的面積等于△ABC的面積的一半.【詳解】∵AB=AC,∠BAC=90°,點P是BC的中點,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①②正確;∵△AEP≌△CFP,同理可證△APF≌△BPE,∴△EFP是等腰直角三角形,故③錯誤;∵△APE≌△CPF,∴S△APE=S△CPF,∴四邊形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正確,故選C.【點睛】本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),根據(jù)同角的余角相等求出∠APE=∠CPF,從而得到△APE和△CPF全等是解題的關鍵,也是本題的突破點.5、B【解析】主視圖是從正面看得到的視圖,從正面看上面圓錐看見的是:三角形,下面兩個正方體看見的是兩個正方形.故選B.6、A【解析】

先求出各不等式的解集,再與已知解集相比較求出a的取值范圍.【詳解】由x﹣a>0得,x>a;由1x﹣1<2(x+1)得,x<1,∵此不等式組的解集是空集,∴a≥1.故選:A.【點睛】考查的是解一元一次不等式組,熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.7、C【解析】分析:根據(jù)圖象的旋轉(zhuǎn)變化規(guī)律以及二次函數(shù)的平移規(guī)律得出平移后解析式,進而求出m的值,由2017÷5=403…2,可知點P(2018,m)在此“波浪線”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.詳解:當y=0時,﹣x(x﹣5)=0,解得x1=0,x2=5,則A1(5,0),∴OA1=5,∵將C1繞點A1旋轉(zhuǎn)180°得C2,交x軸于點A2;將C2繞點A2旋轉(zhuǎn)180°得C3,交x軸于點A3;…;如此進行下去,得到一“波浪線”,∴A1A2=A2A3=…=OA1=5,∴拋物線C404的解析式為y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),當x=2018時,y=(2018﹣2015)(2018﹣2020)=﹣1,即m=﹣1.故選C.點睛:此題主要考查了二次函數(shù)的平移規(guī)律,根據(jù)已知得出二次函數(shù)旋轉(zhuǎn)后解析式是解題關鍵.8、C【解析】

先根據(jù)直角三角形斜邊上的中線性質(zhì)得CD=AD=DB,則∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠PDM=∠CDN=α,于是可判斷△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定義得到tan∠PCD=tan30°=,于是可得=.【詳解】∵點D為斜邊AB的中點,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF繞點D順時針方向旋轉(zhuǎn)α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故選:C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了相似三角形的判定與性質(zhì).9、B【解析】

解:∵O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,∴OA=5,AB∥OC,∴點B的坐標為(8,﹣4),∵函數(shù)y=(k<0)的圖象經(jīng)過點B,∴﹣4=,得k=﹣32.故選B.【點睛】本題主要考查菱形的性質(zhì)和用待定系數(shù)法求反函數(shù)的系數(shù),解此題的關鍵在于根據(jù)A點坐標求得OA的長,再根據(jù)菱形的性質(zhì)求得B點坐標,然后用待定系數(shù)法求得反函數(shù)的系數(shù)即可.10、B【解析】

根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,

又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,

∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,

∴CM=EM=MF=5,EF=10,

由勾股定理可知CE2+CF2=EF2=1.

故選:B.【點睛】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關鍵是首先證明出△ECF為直角三角形.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】根據(jù)負整指數(shù)冪的性質(zhì)和二次根式的性質(zhì),可知=.故答案為.12、1【解析】分析:直接利用二次根式以及絕對值的性質(zhì)分別化簡得出答案.詳解:原式=5-3=1.故答案為1.點睛:此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關鍵.13、【解析】分析:根據(jù)相似三角形的面積比等于相似比的平方求解即可.詳解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:.點睛:本題的關鍵是理解相似三角形的面積比等于相似比的平方.14、1cm【解析】

首先根據(jù)題意畫出圖形,然后連接OA,根據(jù)垂徑定理得到OC平分AB,即AC=BC,而在Rt△OAC中,根據(jù)勾股數(shù)得到AC=4,這樣即可得到AB的長.【詳解】解:如圖,連接OA,則OA=5,OC=3,OC⊥AB,∴AC=BC,∴在Rt△OAC中,AC==4,∴AB=2AC=1.故答案為1.【點睛】本題考查垂徑定理;勾股定理.15、45o或135o【解析】試題解析:如圖所示,∵OC⊥AB,∴C為AB的中點,即在Rt△AOC中,OA=1,根據(jù)勾股定理得:即OC=AC,∴△AOC為等腰直角三角形,同理∵∠AOB與∠ADB都對,∵大角則弦AB所對的圓周角為或故答案為或16、1【解析】先根據(jù)題意得出總利潤y與x的函數(shù)關系式,再根據(jù)二次函數(shù)的最值問題進行解答.解:∵出售某種手工藝品,若每個獲利x元,一天可售出(8-x)個,

∴y=(8-x)x,即y=-x2+8x,

∴當x=-=1時,y取得最大值.

故答案為:1.17、【解析】

此題涉及特殊角的三角函數(shù)值、零指數(shù)冪、二次根式化簡,絕對值的性質(zhì).在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結果.【詳解】原式.【點睛】此題考查特殊角的三角函數(shù)值,實數(shù)的運算,零指數(shù)冪,絕對值,解題關鍵在于掌握運算法則.三、解答題(共7小題,滿分69分)18、解:(1)AF與圓O的相切.理由為:如圖,連接OC,∵PC為圓O切線,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF為圓O的切線,即AF與⊙O的位置關系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E為AC中點,即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根據(jù)勾股定理得:OF=1.∵S△AOF=?OA?AF=?OF?AE,∴AE=.∴AC=2AE=.【解析】試題分析:(1)連接OC,先證出∠3=∠2,由SAS證明△OAF≌△OCF,得對應角相等∠OAF=∠OCF,再根據(jù)切線的性質(zhì)得出∠OCF=90°,證出∠OAF=90°,即可得出結論;(2)先由勾股定理求出OF,再由三角形的面積求出AE,根據(jù)垂徑定理得出AC=2AE.試題解析:(1)連接OC,如圖所示:∵AB是⊙O直徑,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切線,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切線;(2)∵⊙O的半徑為4,AF=3,∠OAF=90°,∴OF==1∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面積=AF?OA=OF?AE,∴3×4=1×AE,解得:AE=,∴AC=2AE=.考點:1.切線的判定與性質(zhì);2.勾股定理;3.相似三角形的判定與性質(zhì).19、(1)證明見解析;(2)CD=2.【解析】

(1)根據(jù)三角函數(shù)的概念可知tanA=,cos∠BCD=,根據(jù)tanA=2cos∠BCD即可得結論;(2)由∠B的余弦值和(1)的結論即可求得BD,利用勾股定理求得CD即可.【詳解】(1)∵tanA=,cos∠BCD=,tanA=2cos∠BCD,∴=2·,∴BC=2AD.(2)∵cosB==,BC=2AD,∴=.∵AB=10,∴AD=×10=4,BD=10-4=6,∴BC=8,∴CD==2.【點睛】本題考查了直角三角形中的有關問題,主要考查了勾股定理,三角函數(shù)的有關計算.熟練掌握三角函數(shù)的概念是解題關鍵.20、(1)10%;(1)會跌破10000元/m1.【解析】

(1)設11、11兩月平均每月降價的百分率是x,那么4月份的房價為14000(1-x),11月份的房價為14000(1-x)1,然后根據(jù)11月份的11340元/m1即可列出方程解決問題;(1)根據(jù)(1)的結果可以計算出今年1月份商品房成交均價,然后和10000元/m1進行比較即可作出判斷.【詳解】(1)設11、11兩月平均每月降價的百分率是x,則11月份的成交價是:14000(1-x),11月份的成交價是:14000(1-x)1,∴14000(1-x)1=11340,∴(1-x)1=0.81,∴x1=0.1=10%,x1=1.9(不合題意,舍去)答:11、11兩月平均每月降價的百分率是10%;(1)會跌破10000元/m1.如果按此降價的百分率繼續(xù)回落,估計今年1月份該市的商品房成交均價為:11340(1-x)1=11340×0.81=9184.5<10000,由此可知今年1月份該市的商品房成交均價會跌破10000元/m1.【點睛】此題考查了一元二次方程的應用,和實際生活結合比較緊密,正確理解題意,找到關鍵的數(shù)量關系,然后列出方程是解題的關鍵.21、(1)詳見解析;(2)詳見解析【解析】

(1)根據(jù)兩直線平行,內(nèi)錯角相等求出∠AFE=∠DCE,然后利用“角角邊”證明△AEF和△DEC全等,再根據(jù)全等三角形的性質(zhì)和等量關系即可求解;(2)由(1)知AF平行等于BD,易證四邊形AFBD是平行四邊形,而AB=AC,AD是中線,利用等腰三角形三線合一定理,可證AD⊥BC,即∠ADB=90°,那么可證四邊形AFBD是矩形.【詳解】(1)證明:∵AF∥BC,∴∠AFE=∠DCE,∵點E為AD的中點,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴CD=BD,∴D是BC的中點;(2)若AB=AC,則四邊形AFBD是矩形.理由如下:∵△AEF≌△DEC,∴AF=CD,∵AF=BD,∴CD=BD;∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四邊形AFBD是矩形.【點睛】本題考查了矩形的判定,全等三角形的判定與性質(zhì),平行四邊形的判定,是基礎題,明確有一個角是直角的平行四邊形是矩形是解本題的關鍵.22、(3)證明見解析;(3)AB=3.【解析】

(3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根據(jù)SAS推出△ACE≌△BCD即可;(3)求出AD=5,根據(jù)全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.【詳解】證明:(3)如圖,∵△ACB與△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);(3)由(3)知△BCD≌△ACE,則∠DBC=∠EAC,AE=BD=33,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=33,ED=33,∴AD==5,∴AB=AD+BD=33+5=3.【點睛】本題考查了全等三角形的判定與性質(zhì),也考查了等腰直角三角形的性質(zhì)和勾股定理的應用.考點:3.全等三角形的判定與性質(zhì);3.等腰直角三角形.23、(1);(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論