遞推公式求通項公式(練習(xí))_第1頁
遞推公式求通項公式(練習(xí))_第2頁
遞推公式求通項公式(練習(xí))_第3頁
遞推公式求通項公式(練習(xí))_第4頁
遞推公式求通項公式(練習(xí))_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

遞推公式求通項公式(練習(xí))遞推公式求通項公式(練習(xí))遞推公式求通項公式(練習(xí))V:1.0精細(xì)整理,僅供參考遞推公式求通項公式(練習(xí))日期:20xx年X月由遞推公式求通項公式的常用方法由數(shù)列的遞推公式求通項公式是高中數(shù)學(xué)的重點(diǎn)問題,也是難點(diǎn)問題,它是歷年高考命題的熱點(diǎn)題。對于遞推公式確定的數(shù)列的求解,通常可以通過遞推公式的變換,轉(zhuǎn)化為等差數(shù)列或等比數(shù)列問題,有時也用到一些特殊的轉(zhuǎn)化方法與特殊數(shù)列。方法一:累加法形如an+1-an=f(n)(n=2,3,4,…),且f(1)+f(2)+…+f(n-1)可求,則用累加法求an。有時若不能直接用,可變形成這種形式,然后利用這種方法求解。例1:(07年北京理工農(nóng)醫(yī)類)已知數(shù)列{an}中,a1=2,an+1=an+cn(c是常數(shù),n=1,2,3,…)且a1,a2,a3成公比不為1的等比數(shù)列(1)求c的值;(2)求{an}的通項公式方法二:累乘法形如eq\f(an+1,an)=g(n)(n=2,3,4…),且f(1)f(2)…f(n-1)可求,則用累乘法求an.有時若不能直接用,可變形成這種形式,然后用這種方法求解。例2:設(shè){an}是首項為1的正項數(shù)列,且(n+1)an+12-nan2+an+1an=0(n=1,2,3…),求它的通項公式。方法三:構(gòu)造新數(shù)列法構(gòu)造新數(shù)列法:將遞推關(guān)系經(jīng)過適當(dāng)?shù)暮愕茸冃无D(zhuǎn)化為特殊數(shù)列的遞推關(guān)系(等差數(shù)列、等比數(shù)列、常數(shù)列或等差數(shù)列和等比數(shù)列的求和形式),以下類型均采用這種解法。類型一:an+1=Aan+B(A,B∈R,A≠0)線性遞推關(guān)系當(dāng)A≠0,B=0時,an+1=Aan是以A為公比的等比數(shù)列;當(dāng)A≠0,B≠0時,an+1=Aan+B可變形為an+1+eq\f(B,A-1)=A(an+eq\f(B,A-1)),此時就構(gòu)造出了{(lán)an+eq\f(B,A-1)}這樣一個以a1+eq\f(B,A-1)為首項,以A為公比的新的等比數(shù)列,從而求出an。例3:(07年全國理科卷)已知數(shù)列{an}中,a1=2,an+1=(eq\r(2)-1)(an+2),n=1,2,3,…,求{an}的通項公式。類型二:an+1=pan+cqn(其中p,q,c均為常數(shù))方法一:觀察所給的遞推公式,它一定可以變形為an+1+xqn+1=p(an+xqn),將遞推關(guān)系an+1=pan+cqn待入得pan+cqn+xqn+1=p(an+xqn)解得x=eq\f(c,p-q),則由原遞推公式構(gòu)造出了an+1+eq\f(c,p-q)·qn+1=p(an+eq\f(c,p-q)·qn),而數(shù)列{an+eq\f(c,p-q)·qn}是以為首相以為公比的等比數(shù)列。方法二:將an+1=pan+cqn兩邊分別除以qn+1,則有eq\f(an+1,pn+1)=eq\f(an,pn)+eq\f(cqn,pn+1)然后利用累加法求得??梢妼τ谕粋€題型的構(gòu)造的新數(shù)列類型可能不唯一,所以要注意巧妙構(gòu)造。例4:(07年唐山二摸)在數(shù)列{an}中,a1=eq\f(1,6),an=eq\f(1,2)an+eq\f(1,2)·eq\f(1,3n)(n∈n*,n≥2),求{an}的通項公式。類型三:an+2=pan+1+qan(其中p,q均為常數(shù))方法:先把原遞推公式轉(zhuǎn)化為an+2-san+1=t(an+1-san),其中s,t滿足eq\b\lc\{(\a\al(s+t=p,s·t=-q)),再利用等比數(shù)列來求解。例5:已知數(shù)列{an}中,a1=1,a2=2,an+2=eq\f(2,3)an+1+eq\f(1,3)an,求{an}的通項公式。(特征根法)類型四、同除法構(gòu)建例6.已知數(shù)列中,,,求數(shù)列的通項公式.配套練習(xí):1、已知數(shù)列{an}滿足a1=eq\f(1,2),an+1=an+eq\f(1,n2+n),求an。2、(04年唐山二摸)已知數(shù)列{an}滿足a1=1,2n-1an=an-1(n∈N,n≥2),求an。3、(06年福建卷)已知數(shù)列{an}滿足a1=1,an+1=2an+1(n≥2),求an。4、已知數(shù)列{an}中,a1=eq\f(5,6),an+1=eq\f(1,3)an+(eq\f(1,2))n+1,求an。5、已知數(shù)列{an}中,a1=0,a2=2,a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論