版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
3.1
Random
Variables
and
Discrete
DistributionsA
random
variable
is
some
function
thatassigns
a
real
number
X(s)to
each
possiblee
s
S
,
where
S
is
the
sample
space
foran
experiment.Discrete:e.g.Female=1,
Male=0e.g.
Satisfied=1,Average=0,
Unsatisfied=-1Continuous:
height,
score,
priceDiscrete
DistributionsExample:
Coke
vs
PepsiTen
people
are
surveyed
about
whether
theypreference
Coke
or
Pepsi. The
sample
spacecan
be
regarded
as
the
set
of
210
differentsequences.X
could
bethe
number
of
people
who
preferCoke.PPCPPPCPPPCPPPPCP……X(s)=4Example:
Suppose
the
Environment
ProtectionAgency
(EPA)
takes
readings
once
a
month
onthe
amount
of
pesticide
in
the
discharge
water
ofa
chemical
company.
If
the
amount
of
pesticideexceeds
the um
level
set
by
the
EPA,
thecompany
is
forced
to
take
corrective
action
andmay
be
subject
to
penalty.Consider
the
random
variable,
X,
that
is
thenumber
of
months
until
the
company’s
dischargeexceeds
the
EPA’s um
level.What
values
can
X
assume?Solution:The
company’s
discharge
of
pesticide
mayexceed
theum
allowable
level
on
the monthoftesting,the
second
month
of
testing,
and
so
on.It
is
possible
that
the
company’sdischarge
will
neverexceed
the um
level.Thus,the
set
of
possible
values
for
the
number
ofexceeded
is
the
set
ofallmonthsuntil
the
level
ispositive
integers1,2,3,4,…隨量(random
variable):是實驗結(jié)果的數(shù)值描述。試驗隨
量隨 量的可能值與5名客戶聯(lián)系訂貨的客戶數(shù)量0,1,2,3,4,5檢查裝運的50臺收音機次品收音機的數(shù)量0,1,2,…,49,
50飯店營業(yè)一天客戶的數(shù)量0,1,2,3,…銷售一輛汽車客戶的如果是
則為0;如果是女性則為1。表1:離散型隨 量舉例經(jīng)營一家銀行裝灌一種軟飲料(最大值=12.1盎司)盎司數(shù)x>=00<=x<=12.1試驗隨
量
隨客戶在銀行停留的分鐘數(shù)量的可能值表2:連續(xù)型隨量舉例A
complete
description
of
a
discrete
randomvariable
requires
that
we
specifythe
possible
values
the
random
variable
can
assumethe
probability
associated
witheach
value.ProblemSuppose
that
in
some
population,
the
probability
of
preferring
Coke
over
Pepsi
is
50%.Two
people
are
surveyed.Let
X
be
the
number
of
people
who
prefer
Coke.Find
the
probability
associated
with
each
valueof
the
random
variable
X.
Display
these
valuesin
a
table
raph.Solution:P(
X
0)
P(PP)
1
/
4P(
X
1)
P(PC)
P(CP)
1/
2P(
X
2)
P(CC)
1
/
41/41/2f
(x)0
1
2xNow
we
know
the
values
therandom
variable
can
assume(0,1,2)
and
how
the
probability
isdistributed
over
these
values(1/4,1/2,1/4).
This
comple
ydescribes
the
distribution
of
therandom
variable
and
is
referredto
as
the
probability
function,denoted
by
the
notation
f(x).Discrete
DistributionsX
has
a
discrete
distribution
if
X
can
take
only
afinite
number
of
different
values
x1,...,xk
or,atmost,
an
infinite
sequence
of
different
valuesx1,x2,...The
probability
function
(p.f.)
of
X
is
definedtobe
the
function
fsuch
that
for
every
realnumber
x,
f(x)=Pr(X=x).If
x
is
not
one
of
the
possible
values
of
X,f(x)=0.We
haveorki1if
(x
)
1i1If
A
is
any
subset
ofthe
real
line,Pr(
X
A)
f
(xi
)xi
Aif
(x
)
1The
Distribution
FunctionThe
distribution
function
of
a
random
variableX
is
a
function
defined
for
each
real
numberx:
Since
F(x)
is
the
probability
of
the
event
{X
x}At
any
point
x,0
F
(x)
1Thed.f.
ofa
Discrete
DistributionxxIf
a<b
and
if
Pr(a<X<b)=0,
then
F(x)will
beconstantand
horizontal
over
the
interval
a<X<b.At
every
point
x
such
that
Pr(X=x)>0,
the
d.f.
willjump
by
the
amountPr(X=x).f(x)
F(x)The
BinomialDistributionE.g.
A
machine
produces
a
defective
item
withprobability
p
(0<p<1)
and
produces
anondefectiveitem
with
probability
q=1-p.n
independent
itemsare
examined. Let
X
denote
thenumber
of
these
items
that
are
defective.
X
can
takevalues
0,1,2,...,n.The
BinomialDistributionThis
discrete
distribution
is
called
Binomialdistribution
with
parameters
n
and
p.
x
nfor
x
0,1,...notherwisex n
x0f
(x)
p
qfor x
0for j
x
j
1,
j
0,1,,
(n
1)jpiqnii0for x
n
n
F
(x)
i0
1
Continuous
DistributionsXhas
a
continuous
distribution
ifthere
exists
anonnegative
function
f
defined
on
the
realline,
s.t.
forany
subset
A
of
the
real
line,Pr(
X
A)
f
(x)dxAf
is
called
the
probability
density
function(p.d.f.)
of
X. Every
p.d.f.
must
satisfy
tworequirements:f
(x)
0
f
(x)dx
1The
probability
density
function
(pdf)
for
acontinuous
random
variable
is
afunction
which
canbe
integrated
toobtain
the
probability
that
the
randomvariable
takes
a
value
ina
given
interval.P(a<=X<=b)=P(X=a)=0f
(x)dxbaContinuous
DistributionsProbability
for
IndividualValuesSoPr(a
X
b)
Pr(a
X
b)
Pr(a
X
b)
Pr(a
X
b)For
every
individual
value
x,xxf
(t)dt
0Pr(
X
x)
The
d.f.
of
a
Continuous
DistributionSuppose
X
has
a
continuous
distribution
with
p.d.f.f(x). Since
the
probability
of
each
individual
point
xis
0,
the
d.f.
F(x)
willhave
no
jumps.Furthermore,xF
( )
f
(t)dtdxat
each
point
x
at
which
f(x)
is
continuous,F
'(x)
dF
(x)
f
(x)Uniform
Distribution
on
An
Intervala
and
b
are
two
givenreal
numbers
suchthata<b.A
point
X
is
selected
from
the
intervalS
{x
:
a
x
b}The
probability
that
X
will
belong
to
anysubinterval
of
S
is
proportional
to
the
lengthof
that
subinterval.This
distribution
is
called
the
uniformdistribution
on
the
interval
(a,b).The
p.d.f.f(x)
of
Xmust
be
0
outside
S.f(x)
must
be
constant
throughout
S.Also,The
p.d.f.
of
Xmust
beba
Sf
(x)dx
f
(x)dx
1for
a
x
botherwise1f
(x)
b
a
0b
afor x
afor
a
x
bfor x
b
10F
(x)
x
aThe
value
of
the
constantis
the
reciprocal
of
thelength
oftheinterval.It
is
not
possible
to
define
a
uniform
distributionoverthe
interval
x
a because
the
length
of
this
intervalis
infinite.Since
the
probability
is
0
at points
a
or
b,
itisirrelevant
whetherthe
distribution
is
regarded
as
auniform
distribution
on
[a,b],
(a,b],
[a,b)
or
(a,b).Example Calculating
Probabilities
from
ap.d.f.0
otherwiseThep.d.f.
of
a
X
has
the
followingform:for
0
x
4f
(x)
cxc
?Pr(1
X
2)
?Pr(X
2)
?Example Calculating
Probabilities
from
ap.d.f.Solution:0
otherwiseThep.d.f.
of
a
X
has
the
followingform:for
0
x
4f
(x)
cxc
?Pr(1
X
2)
?Pr(X
2)
?14042
8Pr(X
2)
1
xdx
34163xdx
Pr(1
X
2)
cxdx
8c
1
c
182
18Note:
c
is
often
called
the
normalizing
constant.Its
value
is
unique.102
116for x
0x for
0
x
4for x
4F
(x)
Example:
Unbounded
Random
Variables(1
x)2for
x
01
0In
an
electrical
system,
the
voltage
X
is
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度山林承包權(quán)聯(lián)合經(jīng)營合同4篇
- 2025年度智慧社區(qū)建設項目承包合同補充協(xié)議4篇
- 2025年度大型水電站PC構(gòu)件吊裝施工合同3篇
- 2025年度事業(yè)單位離職創(chuàng)業(yè)人員創(chuàng)業(yè)項目風險補償基金合作協(xié)議4篇
- 2024版輪流撫養(yǎng)的離婚協(xié)議范本
- 2025年度生態(tài)園區(qū)車位租賃電子合同(含綠色出行)4篇
- 2025年度智能充電樁一體化解決方案購銷合同范本4篇
- 2024綠化施工勞務分包合同范本
- 2025年度智能家居窗簾系統(tǒng)定制安裝合同范本4篇
- 2024面粉公司社區(qū)團購代理銷售合同范本3篇
- 諒解書(標準樣本)
- 2022年浙江省事業(yè)編制招聘考試《計算機專業(yè)基礎知識》真題試卷【1000題】
- 認養(yǎng)一頭牛IPO上市招股書
- GB/T 3767-2016聲學聲壓法測定噪聲源聲功率級和聲能量級反射面上方近似自由場的工程法
- GB/T 23574-2009金屬切削機床油霧濃度的測量方法
- 西班牙語構(gòu)詞.前后綴
- 動物生理學-全套課件(上)
- 河北省衡水市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
- DB32-T 2665-2014機動車維修費用結(jié)算規(guī)范-(高清現(xiàn)行)
- 智能消防設備公司市場營銷方案
- 最新6000畝海帶筏式養(yǎng)殖投資建設項目可行性研究報告
評論
0/150
提交評論