一些擬線性波動(dòng)方程初邊值問(wèn)題_第1頁(yè)
一些擬線性波動(dòng)方程初邊值問(wèn)題_第2頁(yè)
一些擬線性波動(dòng)方程初邊值問(wèn)題_第3頁(yè)
一些擬線性波動(dòng)方程初邊值問(wèn)題_第4頁(yè)
一些擬線性波動(dòng)方程初邊值問(wèn)題_第5頁(yè)
已閱讀5頁(yè),還剩31頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

利文摘受相慚海界別二類非線性皺履方程的初邊值問(wèn)題"Q一マ?ル納田ピ薦龍附)+,他)=,(か—,(網(wǎng)1)開(kāi)女ハ。,t>0, 儆)2)吸工(Oj,=g,科如。)’戌Uj>6)以=U1,zGn. (083)3)此J△0!4M£)UiX§04,g€£15>呪£n,t>0, (0M)4)ubd(〇,t>0, (㈣5)曬風(fēng)。ユH熱〇四 エoGftM1,<,en. (0?)6)Ai'ホ,Iセ、Ai'ホ,Iセ、悔it及璇岐h,其中I崖剛春だ情姉府獅]辯區(qū)鎮(zhèn).就雜二車,,利用@故溫方氷和位葬湃姍蛾蹦慟柳陽(yáng)蜘機(jī)3s的整體廣(。?3)的整體廣對(duì)將藤梱曲腳舟**M不等式征弱口的權(quán)リ噸」應(yīng)馳蝴的期姪槿盛近性質(zhì)-ボ螭硼ド定建屮W':隕,ぎ點(diǎn)冏,跳"偽(斯?^泌’內(nèi)町訥町幽セd其中在あ%定制E常哪,將勲ル當(dāng)’腳言3財(cái);ら*?至鬻,期?。白鰠g)用々関)a為常數(shù)內(nèi)常數(shù);(即人WA停⑷富明陽(yáng)I里哦ノ膽皮閭曰ハ鈕ダ〇[其ギ延州粕為正林燃,嬲リ,當(dāng)’啣ぎさ物;う寸磐9轉(zhuǎn),.(iii)ideの購(gòu)£,匕喇ムM區(qū)則聯(lián)射縄??Mパ喫中盛(5為再懶>〇為正常蜘播咖,學(xué)療姻,.時(shí)亞S抵,蠟聯(lián)應(yīng)務(wù);即正2Nj..(ホ總忒ル,琉q省,8v典①<縱晶前消,其中c(n,P,n)為空間Hi到空間40的假兆量數(shù)常翻や出」B6,則佝咆g+(6&存存整體廣熨蟬體廣義解ガ€1£(以3あ瑞山い)祈嘰廐釧ル冷山!!!幌小;嘮ス(0,T;L2);韻且斕黑芹包3(R)貝刪典帰悔る他-性.您覺(jué)22佳能理h的鄰性花垢果君三ル也喧忸裾W畠附的他7H",盧(0)⑨げ(好)キC微な兇@耳1時(shí)(s畫(huà)㈣,W曲當(dāng),幺づ1,時(shí)],S資(呦之解則s)>0,貝0恍)廟珊H峨瞬啊施烏B其中,c彩期r常數(shù),)理科帆ゆ斗NMWU妬冽駒蝎刷犒是引鋰齪犧1中解件,井旦母びa屛0,在第三章即J用3rkik:?甑明陶蠟(網(wǎng)-M)?的:整體ジ則掰手微粗雄性,利用飄曲?單不等式證嚇蒯褂囑噌脂腓N岫瑯般述明解的㈱ゆ獨(dú)明解的漸近性甌圭要緒檢為定理唱書(shū)〒⑴?エ)安CKJIfeaCxJス藏A0!〇(z)>E>o;(?)訓(xùn)四向噓§觸曲至しM產(chǎn)(用《り旗?兇鋼聊,劉嗯3時(shí)?+1<為V幽?せ岷レ?甚?。瞇ぬ的=皂ル離現(xiàn),彼獻(xiàn)m混爐軸MMsdxセ值渉2ゼ嬲糊擲M娥輔鱗則問(wèn)題他4)?田為)存在整體は徵群體廣義解ル伝j(n,rpHかn耽0MlcpW*t;L9+i);四£由1so?T?;L2).定理蛔若定理當(dāng)?shù)木W(wǎng)他竝:項(xiàng)幅的茶衰減減伸計(jì)國(guó).)£広(0)e洲T+, (サ)期指【四以わ””ザセ/臨MJ/nJ7響的」ds翻戚書(shū)離も般鹹櫚溢,胡噺4N輙3,息浦遲滿足s?p(爾。(0MW.?りー&'。す“軍(t)11)<K,0<t<T的何顯((0(4.)4I0,60啲局都岷局部解,那必率順一羈研鯛軒卜強(qiáng)闕新付+2欝軍^?(/oJ/R/CJlU/i,K)=11,縣,牌凰[0?、炮Aハ,其中,も3伽r啊嶺(例ph険幡い1+IIau(。)11

’"超?乾讖?fù)E件的、條儕颼部總曲三研論n孫娜綃有附包含10期的集合$g膜ホ聡(的卜胴的,使得(啾芻畑s(s的定煙a旋勲海解脫曬),則回廊(0.4K0)6)存在.修㈱用陽(yáng)翱;廣義解加相(。朝硏(リ騎?0.國(guó)ル"it?(〇,co;L'+1)ルWIt3c(QtchO0i尻(磚)°'(n))芥且衰減個(gè)丑肌成立.關(guān)?河視線性波動(dòng)城I丿廣溫娜;糠她值胸顫夢(mèng)処櫓嚷ハ_HstractAbstractLrithibiwe?ady1rfifeyej6^Seiirts岫d’蚪由。(h匿dWi^duircofglot>alsolutionsbehaviouroftheinitialboundaryvalueproblemsforsomequasilinearwaveequations.oftheinitialboundsryvalueprob1emsforsomequasi1inearwaTOC\o"1-5"\h\zveequal&4麗-- +fM=<7(U),Z€fl,t>0, (0.1)\o"CurrentDocument"ャが膽|號(hào)(刪〉。, W1)駅f410:斷均(歩り,=u?'x€n (0l3>2)氣一(今吸タ啦チ單產(chǎn)(G2飴Qu1,z£n. (。M3)V*a°'(x)ut=g(u),z£n, t>0, (。a),4)?(x,電テ即,ヤ住,口ア3,エ6n. (0,勘15)(0,6)Hwithsmoothbd而血is 1dAim站ひ再ア.11.InChapter2,byconstructing、岬poten^a!咽Iyd嚮l#i耶g佛ルinmethod,weob如解がuniqueglobalgeneralizedsolutionfortheproblem(0.1)-(0.3)*Themainresultsth^血iS/f81」ter2,byconstructingthepotentia1wellandapplyingGalThdcM由re?u即&t除(りかe<?ヤ冊(cè)MX電甥聞川,悩,)丫ザ局扣i:㈱ア式:胃N=12a>oT?&23,a+純科;(?)/Kゼ㈣ヅ⑶吃優(yōu)下|那ペ<I/WI<8洞せ1J(s)s>0,ifN=1,2,9>0,l(N 陽(yáng)斗ヅ'ゴ鵜貝upp。sethat(聞&住@!陋ル“幽質(zhì)&+兩朝微現(xiàn)a物,レ(めほ如"",ifN里曰P知0;セ莒。ーf?譴8ナ電耳般牆等4為;(")(抑:隹附肺,向腳と。網(wǎng)幫嫻q.學(xué)(媼摘良:。個(gè)pMWtheimbed斯叢ns&tq£0'from14%細(xì)"や狂梱嗎(in)g€Cl(R),?g(s)ds<B5{slp+2(B5<(),1g($)W,if N=1-2-p>0-1f朋魁と .<^/N2"4(iv)Uoem口舊,QくE(0)婿(鼬)k(a,?,』isW lmbeded。?!romHlt0島+2'K=§1—B5.1H0j3)ndmitsauniquegl(?bdaeraHaedsahitimrraiizeas〇iuti睡ム的門現(xiàn)他MgRLMa人?S)rM即,獨(dú)噺,(0,T;L2)Thfeftftehf2WndertheSrrfiな由Mof1The〇"由Tif我沛?p/I伊《蚓《屈"|本第W)[一盧(°)m embi(0, —C伊(s),ands21,夕(s)W0;sW-しダ⑷>〇.Then-0,fI,(kH=a//(85,and8>1,^*0J<0;8<-1,A"(s)>0.Then冊(cè)什福噌時(shí)恨搬噺尸既ス詁,賞為飲”怕(騙ザ酷情用用(油切削咽た?ereinr(t)<0.嗎ヨ噥催白ザ用啊即用肥噓枳吸納1M燃):閥)by鱷睡£啊啊!erkinmethod;also,weobtaintheuniquenessanddecayofthesolutionbyusingGronwaU噺呼也嗔マキ學(xué)嘈ッザ¥噺U……ndd……f』usingGronwa!1Theorem3Supposethathes〇1utionin冋作蚱片色屮夜、哂[……一,………e1*)9€。便)后9(T)而<氏トL(B1<ゆ皿s)|<BjW,ifN23,p+1£城,?V-J*Theore3SupposethatmW?0e叫叫€£,,0<E(0)=州Ui『+知?〇『ーhが9(,)心如(i)o(,)£C1(磊),勺時(shí)(翻%h;BHif.Un>3,P+1莖Then(QHH靜)軸耍帕BHif.Un>3,P+1莖小ユ u€レ(0,T;用)nJ(0,T;IT4(iii)UoEtUitllEL2,0<E(0)=;11u1112+;llwOllz-Jhjl9(s)dsdx班主曲ム也アめ)."Th'edfeiFナ,Wthecb向hi&tin'thloremtl'holds,'fben^welia^tiie1followingdecay6stim3 UGL..(0,T;nL,0(o,F;Lp+1)E⑴<E(0)e-*”+,(り“teL.(0,T;L2)Herein即)7眄け+如"んg(,曲.Tj尚KXジIf聴地此t婕1HhMr黜3%照録たざ鴇區(qū)、防星鷗I溫30姚ゆ蒲加,好(°6)satisfying呻{W4-Mf冊(cè)M她DM段プ,H=re10E(い;;II”t"2+(11W&12ー眉んg(s)ds.The0re5 [ftheconditioninTheoremsholdP,謂(!V>3);“iSthelocalm Siandsolution〇f(〇,4)—(0.6)satisfyingthenand屜用紀(jì)鼠內(nèi)キーIK)=*,聊畫(huà)?國(guó)虱目)嚴(yán)UY如仗)!セ輪Wm0+IV\n(t)11.ThctoPehi6Mthe(ccmdiUoniinthcoi?em8rholds,habd更端 曲同;thenthere】eexistsasetSC[IFfa)ガ⑼]x可仰)co<naining(0,0),suchthat(%小)€S.whereSisshowriinsthS搬城町中!1爲(wèi)出h囘,訕(F(〇!4ル<〇ぞ価時(shí)由ag!品&!圖加ralizedsolut^n1sshown1ntheproofofTheofij;indif),,l.l-io,41idffiiIs?g}〇bMgenera1izedsolutrem ?€J(o,-H?:^(n)nがぽ))nj(o,マウユUELOO(0屮9ら(°的や黑(R)鼠2(n))nLoo(o,o,:Lp+1)Moreover,thedecayestimatein卩?ザem4ho照心0生,n、、Keyword?QuasilinearWaveEquation;GeneralizedSolution;Initial-boundaryProblem.Moreover,thedecayestimateinTheorem4holdsalso.Keyword:QuasilinearWaveEquation;GeneralizedSolution:Initial-boundaryProblem.鄭重聲明東人鮑挙僅槍來(lái)愚海髓隨而獨(dú)、對(duì)明倂彘就的培爾匏摩籲匐鶴竊、穆囊等違廢學(xué)術(shù)道德、學(xué)術(shù)規(guī)范的假杈行涉、膏蠅,,辨知盛劇梱扱地產(chǎn)生的一切法律施粧制送郁駆/朧薙初明.學(xué)園蟆:儲(chǔ)」,確刎年5第對(duì)%?:陽(yáng)第-鄧明言利嫻海用呢:美面推發(fā)黑方程的新埋值同覆討"制T!走獻(xiàn)餉+八回=刷エ€nハ〇, ⑴屮)uW*Ort^O.t>°■ 位2y)*,(3I=歸,甌(i網(wǎng)ぎも,06優(yōu))='U1,Zen. (i,i)3)咄ヨム”嗯也)%£歹㈤此€=傳田6,u),zen,t>〇(£幻4)M加3=^ふ〇,t>0, (オ司5)til(西郵ゴ也?也⑼u研,デせ儂en. (1.5)6)的龜缽顯蟀敬姓貝戳一冊(cè)明蠣酬,其中也姥空!師綱中若光川後葬塀闇n的樣驊區(qū)域.ガ極孤H是」ー類幢螞翻做髮盤(pán)蝌我里知礎(chǔ)屛癡隱摻單理甕應(yīng)變渡箱幽解,建參惟翻眥類有裡桐找展附聯(lián)発,穽寢難鏤襯師蝦,淋的帽蛔廟搬咽齒匕(用)5I成,坪ぜ莊)くI;PS(^<i,t>o, (1!わ’;U皿。0=映甲U,a6)=0,t>0, (俺)8)哪t網(wǎng),=咻礎(chǔ)0&竝0)j陶。。そ生k(E),。<z<1.(的)9)魂幽s?夠有畫(huà)セ1隘年荏研発粘性力學(xué)聯(lián)毋穽帆冊(cè)濯尋小網(wǎng)奔?奔口如)>0,并且b則隆有較踰姚擁縹琳闞蝴鄴您穿裡福明的物闞同解解拗0庵體古典舗爾府班.G餐吊島耐坯于う亮9蛤部嚙腐卞園初選福価飯了如下的初邊值問(wèn)題?之城+馳』+版ル卩ぬトと(0,1)x(0,00), (l.(lb)1い?罹刈い42川他(.0)任爐?田(」わ歩オ6,1, 也也)11)x(o関,-o,=w(彩り』メスラ在t>o, (iW)")隠。,)ゆ田e砥用成立的好解轉(zhuǎn)到聯(lián)廳笆包M1!曲)的解曲存艷性!勺解的存在性'植餡榔難空跑從融短評(píng)綸修者ヨ巡ユ聾珊充冷這斐腳睡期哂跟典蟹性的整s19離年做dM理g稗籠剛チ]典丄詞?卜淮的戸&恒?*口峪際t)酔條伸司誕磷條件下,證明ア問(wèn)題。7RD.サ的整燧解的楔雌榊帆耀卿嗓稲韻邳劉頻雌いヤぜ)中也研痢和初暫例可題作ノ)巾.?)在釈轟ヤ,甲方有界f嬸香郎t招隔P世閣詢G破n02冋?時(shí)?J16)ゆ倒存在整體強(qiáng)解,佛鹿物欄是T粼鞠畑曲滯螂轡堆商具有惟ー悔.楊志堅(jiān)教覆阿和來(lái)根朝轉(zhuǎn)貼餘願(yuàn)的斷蝴由。。變換方法和每勸幄曬肚方法證明萬(wàn)滿足す蹴牌的阿題ゆ.唐”曲必在有限旳蝴臓網(wǎng)爆破?19卵隼IDM財(cái)他如曜解中限用始憫物扱制陶勘、可題NQ%啜(嘲關(guān)臨做価デ時(shí)圳Mw0、(。ス),回嶋第?〇二〇, (1.114)1)穏(!爲(wèi)0]す設(shè)幽(備①t=(倒,0)="1. (1115)5)am《,卜且是あ是的李増鹿變藩義卵強(qiáng)并且網(wǎng)到ヒめ!同オ,1田冷火T,...>r,ゆ劃W?せ邸+#汁Mrピ卻),VzER,其陣?,,a>並〇c},cc2和懦秘礴褲數(shù).(4㈣):盛ユ宙是連續(xù)聯(lián)縛隈濡制1?滿足(Mケ4カ)(エ《眇ユーa1f,+£ル隹オJV12,比,Y£R,稱貝工)IK9“れ王隅マカ汁ルa尼+1),VzwR,燃機(jī),0¢,ス松川咻レ昨尊。圖)-(山駒存在怖J的麻解.存在惟一的弱解.納冷毒般堅(jiān)教授M還林財(cái)勅皐的郵用倒屣殲童海都欄顕削摩多韁稱神雇^艇把『冷相關(guān)揶網(wǎng)的扁)做的,。岡

號(hào)〇?U(氧〇)KW(アト原?(花9)產(chǎn)憚tt(X,0)=it1(4117)7)(¢48)8)在學(xué)線性項(xiàng)和初始值構(gòu)足一定的假設(shè)無(wú)險(xiǎn)『期應(yīng)怖冊(cè)解糊軸性(4117)7)(¢48)8)網(wǎng)1也研翻T他)働題同ーい網(wǎng)通過(guò)位義十義位贄彼定他得難那卄系朝的結(jié)果系列的結(jié)果和解働真窗幅賓幅質(zhì).本文第二章和弼物志終f,覆在口岔中所用的方法法得到襯價(jià)制值條件存阱并用凱り售擲姚X,ゆ,棺應(yīng)冋晦利加Mi.到的廣義解的整慚屛鈿劇勺幡市性和箍一性和衰jrms.方程(い).是1類正要的要的Mbrdoii方程。他用來(lái)描述零’自簡(jiǎn)舜駐或魔零自旋標(biāo)量或贋標(biāo)景雅チ的相對(duì)輪件不変的量f??茋g作看樹(shù)穩(wěn)足尊!同的屬蜘件用研究了摟類お働麻的粉質(zhì).WHWWWWM聞J叫他得卻7W添櫛嫩果;在1懶年NfcW在網(wǎng)中研究不以下問(wèn)國(guó)究了以下問(wèn)題貼rVWHna(桃SWVQ,t)=0, (Qll9)9)8(明陽(yáng),=8M0,(做(nQ)t=(*i⑺,=u1(x) Ui20jo)tt^r>a=rifc0. (1.21)春捕見(jiàn)小田Ct(知1呎(叫怛X(£)|m|J,[曰02,11“"厶ル12*0的條件Ea的條件下,若(他/)6渺。叼満足4次劇容郷笠郷到ア陶BR?吟(1.2タ解的存在粗)懶勺存在性、惟ー性柚麻劭繆城或融雌.花19翁年穴短。在文獻(xiàn)㈣I単蝌?歩す初現(xiàn)懂問(wèn)腳、下初邊值問(wèn)題^“毛△ぜ+"工網(wǎng)キ〇,ズ叫け餡^/軻變公,。。) (322,2)U(彳,Q)卡?Ub(x甘ng(4O)ヂ堀閭,0)="1扛), (M2?3)H?h0=?.=〇. 0124)4)在假設(shè)(&)1Q支域火質(zhì)900閾キ)河0ae,丹?,"〇<9W1F速里w是不I判解f戰(zhàn)中的開(kāi)集,{T(e0)(3c{fiセ廊([任金都押(り>(0},?&Tセ。ア;(z)>〇),"Dr(z〇);(ん丹)(Mw0),WHE】n瑞或けFEff/滿足,皿而8駢次相容條件樸,;相腳F條件時(shí),得到了

本文第三章利用揚(yáng)忠螂蓑也國(guó)中新網(wǎng)的協(xié)源解睹ナ殲病期雌源項(xiàng)的更一般的方程,在小初値條件下得到了廣義解的存在性、悔性和施數(shù)寢第二章問(wèn)闕題ス2.1M伊⑶的整體為用!踰存在懶政存在性及衰減性出1引育和主要結(jié)論劾方程枷邊値問(wèn)題,陶オ伊『?例量Q/幽朱惴ッ順仲ヒ99榊弭テ:抬?&〇,=B0,f>G,>0> (個(gè)?!薄保?:礴產(chǎn)鹹対如。)ア帆ド。任=U1,zeQ.穗樹(shù)GMif穗樹(shù)GMif方法和位勢(shì)律理極符到變ン鹹即?應(yīng)文的帆搏整體廣義解的整體廣義解的律?碗.、権=慚解旺推.溺讎方債,,軸攜第如三他の與怯なヨ£的),レ1川=#盟,1iレれヤW;(?。┥?外妬加な?丁z)出,朝]ホ1網(wǎng)航卬標(biāo)"=咻^畑),P=w"(n),例券粼w(=u隼碗碗油))、リ由郵丄B郵目少由噺曲哄相效ヤ?生瞰心中!),=Z芋.Wi'-巖片⑴」此ゆ倒,1融》心由帆**2幽がゴ1捌)|馳け?20,其中aメ?;h府常殲,輜聊當(dāng)陛闞,od內(nèi)空聘其制f及收強(qiáng)地卜風(fēng)(舟正博出正常數(shù);(咪”憶我硼卿3型帆覘ザ[£用舊切郵油ルU(xiǎn)肘ル;其取ねで%*’吐°為常蝦,棒射WW即,抖セ隱告;(的せ)び的け曬泌V物卜ド腺射や為陶""其中用物芷,常啜;P侍。為正常數(shù),特網(wǎng)郛羞㈱附Fg害圖聽(tīng),雌等陰芻:望端生(即刈版則如鼠<oUfc(b9噂(麻助レ箕恥d曲演行燈卿剤働空中略描験厥常數(shù),數(shù),人及ず』人「風(fēng)?W(嬲4H存的辭件的ザ義解U?國(guó)〇"兩}班則行限{。即;,ル2,曲ヤ,曲唔ル)!,丁;エ2);

P亂艦臂論簡(jiǎn)聲喩繡靜必轉(zhuǎn)事評(píng)"”憎嗯m29s.鐲如驢用榦悟般』「“如且冊(cè)聯(lián)幽歌)に,盧(。)=賦御神?儒恬)唸翻銷リョ,マみ伍明°s%,貝。爛i索娜襯端晡已歡,,,隨中熱離愕a州府必師豐齊喝將禰繼?件. .韜應(yīng)據(jù)禮疝轉(zhuǎn)翻嬸螂穡即悻)不漫鶴螂例如理孫

弓弓

理孫

弓弓

22炯+$,彝確《師『附源一氈髀!鴨縊蟹附解簪髄晶函數(shù),且髓狗ば純看啜ア純陽(yáng)縊麻貪場(chǎng)姊幡囁0め?、勲>。,C>0,使得廣而產(chǎn)?(りあ<CE⑶…+W萬(wàn)バ⑼困つ〇ス〈8;引理2(Aubin—o工Wfv母啖刖ざ1部。若盥へ.ト。耳,是自反的,且的p1V〇。,記:則存在常數(shù)財(cái)>0,使得E(t)<£(0)一?—r,t>0.(〇,T;B1)),MD§索初&輒ス3ル団:枷)中.引理&G襯ika加!Wricnbc瑜れ佻)設(shè)1R域14整@鹹pMO!則肺倉(cāng)ゼ卬ゆぬレ成立不等式エリ郵カI(xiàn)1.—.典中,聞取圖像ナ黜d)嚅!t2な肅Q緑期1(若q=+<?,則0)<a41)i3鹼廣黑輪的葡雌碓Tt殺衰減慢定理11的1滴鷗:?微由官胸姍腳踴觥捌難*Bk的正交規(guī)范基,根據(jù)般臓啊訪法,i野カ法ゾ對(duì)W聲由以下的蒯験分!^程組嚏憊分方程組確定(嘲3AtM曲AV和)R咖:用ゆu?,v嶼)TOC\o"1-5"\h\zモも破(由)&陽(yáng))卷?C/即キ的)v(9⑹),3ル ユ3?)礦(8。蛤=?叫于用聯(lián)2m—00)@4%)噎⑼R)?IA01正用セ于初―〇〇). (25》)根據(jù)(2.4W25)級(jí)知5)易知4嗚)E"%Jメ0?"忖2一〇。). (匿佻)將(2⑶.中3換沏賴粵明(得到芾剛枷的淵W餉GQ+べ. 修7),)箕中樂(lè)@?莉>確瞬桃:姍FU守如,心 刎!當(dāng)n-g時(shí)<j,用與內(nèi)甲同樣峋雌J我他藥以礎(chǔ)?到E38(HE(削ho4〇?)i〇〇)> (29)9)

%(0)y2良Q)E(0), (2210)。)妙ト)^t>o, (2A1)1)加護(hù))粋ー|ヤ-リ『+M(リ隣わ+ズII▽啾T)『dT+£I附柵—有スズ時(shí)⑺喘“<2£(O), (22J2)2)期和禮是于是よ翳精收斂單在桂。ル(0,5,周)rrム8ケ;レユ9中,(。,T;Lp+2)中,け軀她敢于睡在幾也直な)血(。げ;砌r喝た如(M闿喇牛,中,衆(zhòng)が)嚼[收斂般ザ在,心).。7;£レ2Q甲廠),)中,ル咐峭,嫩好年都恥珞皓)地,(QT)中,鐵0)福J拗釧毯後え話《?メ中.?(Q,)中?(2解兩端關(guān)瓶端求導(dǎo),t界棒3R黝地仍轉(zhuǎn)到t)得到雕林蠅屮喇岫弔哪f廊囑ト(k)も,%) (う到ヨ.式[(ぐ)唱叫か日(貞い九界ぬジU?,“&).曲酬町可得i)可得史歸嵐).假,電4〇, (214)14)伊?礫廟タ蛇。. ⑵加5)曲恥母は不等式和;洸曲學(xué)不等式咽.蚓曲檢瞅及定理可得嵌入定理可得的叫哂、勸i,皖)今的叫哂、勸i,皖)今也浦311%曲唱1“-6び恥論哪||V“圳タぴj附”婚¥訊セ0伊ユ2+s,1v哎限由1(243H2網(wǎng)可得16)可得擋際地好1收何『)+Ru*)1124s5りw嵋(リ『叫強(qiáng)加)『.再也13面頒呻等式t不等式啪㈤IT+ゆ難肥卻加@陽(yáng)し(。『或<厶(118)161您17)17)(2幽18)播停勤.中加銀爺」換潮幅到7得到終I施慟肝庭雄,)儼)+4陽(yáng)『+自伙?),△に) 側(cè),蟲(chóng)VWHかマ以)¥既ラmtK?Wh”),vu?).由⑴,叫可得)可得應(yīng)然喩磔顆就網(wǎng)岫)▽唯,▽唯)>0, (2220)0)(J'(^)V^S,tV??Xipj>o. (021九)申!科納r不舒西和;、典和庠不等式勒及柳輔糜如生定理可得嵌入定理可得(,他"源ハ啣ぐ)Vu})$悩俯刪対陽(yáng)蒯剛孫啲1レ (刈2)幽乃ゆ財(cái)(訓(xùn)a聞⑷Iia“j(い11爾わ!!ム!戈堺ヨ+と?倒(?l1au:*(t)112.由⑵19X22)W22)可得撩甘常姍岫帆蝴帔I△唄リ『4C(T)|A?B(t)||l+4△球(リ『(逾機(jī)3)為島Grgwatt不等式可得等式可得呼ザ。慣働猴加r,レ,/II△す(リ『山<ム.(2224)4)曲((223)啟事)和引理a可蹲I引理2可得ザー№!予人ゆむな⑴強(qiáng)卯且且租于磔0T,明ー網(wǎng)仔も(0,れ凝用ひ并且助手財(cái),,ラ噓ーW:手應(yīng)以冗珀砌井旦い.于ルr.曲伊("人ル9(邱的連鑲性知的連續(xù)性知択噸)eVM>。e(珊)3ラ于0T,—>ケ-a”)玉セ,于QT,的險(xiǎn)ラ/叫)(3)于.第QT.最后,利飜與工2相對(duì)何而法春繭物惟ー鹽的斑明:設(shè)風(fēng)ル‘弼題(23)的兩的螂?、幡森』戒通帖《?,満sr滿足年憎例用出衡朧攝閥+加)”)(2.25)那端與舊玄甌跡作曲腆縛到眥經(jīng)解網(wǎng)做刪口產(chǎn)軸―蜩一/(叫地メ(%),對(duì)K國(guó)3))」紬1aホ)9扣),Wt).詢①而)得到)得到病輪aJエ中&益);唸)(理交げ(6迎,20, M7”)其的4杉峰+(卜出的%U,Oo<£y京1:(〃叫)r4)用カ甌)之"Ot)川 (03戸)由閨野中不等式神;畑城不毎式劭礴賽勘驗(yàn)轍入定理而硼茯入定理可得(¢(8)ドす(V)喇)口》,宙朝陽(yáng)W0g1(d)",訕)SH地一如加蛛U(xiǎn)軻捌-ff她(圳d豊に(T)パ2⑴爛ホ迎a刪Voot(t)If<Cほ)啊闞圳,陽(yáng)&耀則別マ』)11 (2229;9)腳,野陰3軾,哄腸,dせ患曲轡6P低劭得到29)得到論輛帥卜闕耐林琳WF4CNW)『. (么30)m)博腳a酬四曲不等我1項(xiàng)懶し性禪證:性得證?題噺魄哪布麻苛用軟加樹(shù)械編的韓測(cè)勝,取網(wǎng)郷的應(yīng)H的歯糊遮囲口E(例(例加加)tWtag"葉劭」方程)(21)腐邊用,皿)陽(yáng)職并由)儲(chǔ)岬榭鄴i),(ii)得到題噺M瞅撇刪悔去側(cè)%)&)+-,%))<0. (231?1)’人|廄歐加疝奇跚闞稀標(biāo)的題卿rt上積硼嫡施鼬到Q知f聞りザ(ハ制”吟刎hZ?「卻?(帆Di?加?)巴!!吸他不科)動(dòng)dt--?)”初殲M媼トロ"(F(lMJ(i)卄EUM”正"ゆ岫it憊J:即冽圳I網(wǎng)網(wǎng)%制M*(朗除曲腌けII知M+な即)機(jī)中▽出,Vu)由-2豊&(りザ(メレ@]攸"?盛顧”)ゆ相(択対ん)由)(f(u.),u)dt+源馳M州(甜片口)II鋤)羈陽(yáng)+自用?。┇I(xiàn)f)(8(u”)uIt)dt.(2232)2)用]與臥相同鮒射法,?阿趺得到到聊麟期號(hào)陶ぜ閉叫罕バやボ濘咐『 作勧31令旭他fWBIC船用⑹<1,<〇<0<1).(哂4>忖蟲(chóng)膽解幡根"I被昭II▽刈『<2(1-加(り. 煙5)5)雙斛0沙(卿鵬所顧川頌%U湛4?厶’(EW(り+E⑴6(り)(*冰臓例礫明(酔イE⑴粗リ(/(叫叫出一屛則WMWt,V")dr豈腳則軻ゝ守,刑 (2酬6)紡別估計(jì)(232)式右邊創(chuàng)造併歌可得丨一畫(huà)那他)他刈麻&E信)枚。網(wǎng)窮ぐ歐⑸’, 借B7》?)If詢醉㈤什朝劇則弧,嗎期<CEB)?. (慚8)(2239)9)(2239)9)曲]筆Mg環(huán)嗇鼠和等應(yīng)租,可無(wú)3司得噸部用的仇5)⑶皿),u)dt}芻a働?露即)帆琳岡り岡H鼠u(壻1?湖Iy。…⑴)從dt自融網(wǎng)帆帆中則I哪(矯爛柚麻ひほ研慟⑴覘V側(cè)加圓附平州収%(り那9山生?席即)縦)陽(yáng)師用也(卵畑典沖斷01(-E(け)%?s國(guó)般ユ尸椚り成4CE(球+cE(S)2,在證明中器羨使曬験桐"拘や爛Vu)dt1メ拉巒卿(帽帆(軸Ml1v“{洲2圳風(fēng)物附酬!櫛協(xié)H扁制咻神*’的+験”)網(wǎng)W(CE網(wǎng)セ2.最后,估計(jì)(2232)右端漫甯的龜軍,令Qu?(雷西口,1咄,I忌1山皿)*4*「ユ,|叫屈在1}は1)HfhUn2陽(yáng)!る悔禍強(qiáng);如矇&臥由號(hào))A噸網(wǎng)1)用「護(hù)樨叫〃ー)).因此津(卅鋤蝌制t)dd銹段欲做購(gòu)而用に川駟セ約dxdt―一熟檄酒鬧「轡h肝fu-fdz出干翻M枷る頓仲帆桶中1lux.Idxdt牙潘溫駆)做sy如呻ヤ。加[先解,№。1如出曲區(qū)雕淵)れ做府隕!ヤ桃% 依我).熱刪t怖枯MH瑙蚌隕%1W惘器洲油%也…S糜向鉀)ダ付輸H曬,曲叫|\;[dxdt癩辭)WW刪!怕冊(cè)山威由,〇ヤ學(xué)"曲佐?32用2.42乂得.到2)得到逐我用’帥福界的S)2 必純I壽耐用助理/當(dāng)切外I時(shí),荊タ鍔惴懸ア刷M懶ft性能證.第三章問(wèn)闕題3(31や.3)的整倦ウ單榊存衣懈力在性及衰減性§レ別前和圭麟波本章時(shí)診如下初邊值網(wǎng)題:3セ&nl?。㈤&t=域U);況&玲ふ>Q,>0 (31)1)回岫?R5Qt>0, (每2?)3*,Q)づ州《w(も(0:胖¥ハエ€Q (R3B)物整體廣義解的在例なヤ健一微楠麟的敏?怖質(zhì).本章剛用G金由n由法和拗蜂方位好港阿廳輅ゆ⑶3)的整體つ義解的義解的存在恨制Qrdh他!。不等式得到鄴博礪飄靜NWI用物得到解的?愕到解的漸進(jìn)性ft.伺あ9?(QaT)x4cHな仙'iWJVVヤ㈤)”W?尸 用巾(n),Hm=Wm,2(Q),II峙k'UH必bl”ヨトnあ」恢主要結(jié)!物如下:儂リ1推,(屮オ句&的?!兜?gt;0?(z)>£>0:黴ヮ樂(lè)ボ囲mJJ琥動(dòng)所田西何時(shí)網(wǎng)K晶旭必S用四)瓢的H時(shí)”啷?謝,p+1星斜;(31其せ硒?但以かイ著豺4申亂取イリ訥0『1』ん(び域サ蠟rg(s)dsdx?甲(か",a為(用;姆修物酸第常數(shù)數(shù).射問(wèn)題(33ト(B?存存整體六曲鴛體廣義解a€£?(?,?;fftf} :妒+1),迪モ?低或ル2斤iL2)3當(dāng)南定曜II的條件廳立,,廠科曲阿將曲鮒計(jì)E⑴生后楸ザード,(W期樸建昌aw41Hl|性即ア嘴グ井耳ル如定理33若定豐U冽鏘曲立立且帆づ器(騰?;>是蠲是滿足皿p{MWL心(3}<K^<t<TM!lHt川—W k,〇st<T的問(wèn)岐局部解,那么的問(wèn)題局部解,那么 K? ,r.jE.(Mり)Sん+CiKl。+Ci-+GK,:'+2TjF^At"E(n-%%%を)=4+=G(Io,11,K)=f1,且將G(八厶,K)=h&(u(t))n腳叫(t)||+P△駅劃.餌?劇4K若卷轅1的條件成立y回用陽(yáng)仆的3);酈么存在ー個(gè)包含(0.0)的笑翻チ靜遭キ購(gòu)條鏡桶;使解U瞰府8心的空義鬼兔働k的食哪(。,。)附相侖題dh抽階在蠣/吸練),使得(U。,n-)es(S的定義見(jiàn)定理4的證明)使得問(wèn)題(1.I)一(1.3)存在整體廣義解U€厶g(0,+8;用CH1)C£,(0,〇〇JIT1),〇〇;L卅1)116二8(0,+〇〇:破n曰2)n〇〇;L卅1)并且衰減估計(jì)仍成立.

并且衰減估計(jì)仍成立W€厶o(0,+oo;Hj),U16L.(。,+ゆ日3),§2引理§2引理引理I設(shè)メリ是。ア](T>1)上非負(fù),非增函數(shù),使得引理1設(shè)妒(8是(〇,T1ロ>I)上非負(fù),非增函數(shù),使得/產(chǎn)4MMt)-<P(t+1)),t£10,n妒(t)1+,SJb(_p(t)ー妒(t+1)),t£f0,引

典瓶,陶愚あ常教.r是非載常教,,岫l<t哥也皿耐Q時(shí),厠))運(yùn)便<0)め+?埼、舊ザ譏叫]+)-1/r耕,?膽メpr屮叫曲1ネ1視l1,0).22當(dāng)碧=rO制時(shí),城。區(qū)Jp(8<T椚"諛なIローq+,§3疊給廣義!権濤在悵帷ー性感蠢繊雌11解的有在他和懶T?由以下常釉劎喉(MM製)的帥個(gè)近憾臚q晶協(xié)%%Mめ,束%,{蜘%墻1是空働標(biāo)(ftHれ的曲本規(guī)?;?占,根擷Glerliine方法,i嗎ノ聞(u"(d)曲)曲以不常微,シ強(qiáng)方程組決定由以下常分方程組決定伍,叫)+(Vu,▽%)+(a(x)u^wt)=ザ,嗎),(3.4)(MU,2%)+(Vu,VuO)+(〇(.)u?,Wt)=(9(uu),wj)t?(0)=球一3m用nが,(3.4)(3.5)"”血)ゴ"域&i即:11112做屮定義位勢(shì)井嵋(0)=嵋ー"utin破(3.6)定義位勢(shì)井W={u€用|1(u)=IVulp-M^^Oju(0),同)w嚙襯部陶杵如啣號(hào)7踮山⑷ばザ易證明,叫神舊;刪h °(3.8)易證/他―(3-9)友他;」E曲網(wǎng)),出唄曰(〇)--E(0),1717(3.10)信國(guó)隹@S).電用中辭換T置換毗練風(fēng)加誦湖聃ハ(到咽出=JJ:2ヽe押2)得到胡制的你網(wǎng)前翎棺&(°)<2E(〇), 吃?)次豊)當(dāng)麺公州H歸⑴偽外?〇7鈍。叫fnri惻瀨小叫印『+((;-的い典いII黯!u〇脾:才(仰蛹ヤ科森)レ+.2),睥中,《圣、1母ザ憂于是帆軍陽(yáng)獅叫R曲干【融(?]ザk%所以,所以II祠竭!M一時(shí)MN叫卽啾廟昭如1<IIVu.mM師ナ納帆ぜ由州幡和。勵(lì)姫謝酬軻唧情呻敏般耐?反㈱時(shí)如g咖珊射媽、胡槌加馴聯(lián);,用是“吹在ザ偏む科(卬)2中有界,)中有界,lUfWMO魚(yú)琥岡)(中有界]」有界.【睜A^iMLtona哪理ns引理部?F?お年曬).).榊雌M的苛視娜ぜ為啊,1mMe:再曲作的的燥懐性喊Uf?))r9M)03^,0,,又腳抵。削削”耕下行比收軌椚0p用博理,g依な弱哪例99料)麻附ヤ中.手惠定理由通格?ItT性:設(shè),唸.睚問(wèn)題O1M333確兩ホ解,令畋け以囲哨,(斬州瓏承|珊(t)織理楸は厶期好依啓テ的?也9雜)一窘(移). 圖?)fW't耳施ゆ軸輛招觸例施稀式礫型物|不編灣不等式得施網(wǎng)脈鈿喇以刪對(duì)由=他(-必,”),媯),ハ納WMや用啾恥ムピ⑹",ゆ心エC(||Vw|卩+加『),其咿”f?也th@"(3い〇)v.由(Gmiuvoll壞簿式,イ構(gòu)K性稚證件得證.淀璀険的砌⑹3).兩め用地傳的積我的対用n得到實(shí)ル顯沙州I死恥鄰+Mアけ 住圖)曲iJ熄岫)的條僚僧]得妳好)臟ザ胡 財(cái)晩就0,1助武廟用雁值定理£pあ自倣rL4M降シ向M“田林淸足帆(酬?な由⑴《斗ゆ),?!浚﹥善炝ネ┚趇也,⑨M麒出松分得到城府稲的T府蹲制肺十奇軸⑺磔" 偉ひ,-他.—(啦綺?⑸用+-MムD--U陽(yáng))).他計(jì)4:3J7D行端黑龍頊三項(xiàng)溢あ取圖以(ア兒(4速真)u(s)dXdsメ卿始IMS)松)12);メ供鮑!M則於I如 儡臉),雙亜p必知陽(yáng)め士帥ル細(xì)()『切四£網(wǎng)業(yè))(正。如)}<5C&(り3(り.(t).朝((337)函()3整1得.18)得。際俯他曲楹)’ホ的3%斜椚帥n丹 陶以§)扁手わ2“々?以兩頓凝韭増的帯輒的得到費(fèi)的郴ネ盛酬產(chǎn)と爾切, 偷ゆ」曲((3319)駛()3蜘9得到20)得到照用馴rtMwEz初期忡ザ±£應(yīng)嗷作心£2カ蚓叫呼唄ー/:。(岬バ"<0睜炒小ザ井宓筑か!)D&H+お致毋).(t){D(t)+D2(t)).曲Ybun@不遂卻等式W)CS 款。さ負(fù)歸收)t-)碑6切.(E(t)E0+1)).由倒斑⑴相即到破目t£wG6'M)(=tF(母€"%び也e1p-1]+.于是,,觸!!宏詞特た屈信的證明1J方程兩選乗以ー△畑聞抹在ft上枳分得枳分得キ京ゆ虱?)/卜齡?め+(Va(r)?<+ロ㈤▽6Vu()=(VS(u),▽%). 儂21シ)定義?馭Md琳蜘酬63附112.估請(qǐng)((*21ア右邊次崛「得到K樂(lè)南ル零“り)?<eii#frJVuftxi#Vttt(t)iii11vu.(t)11笠1神哂)唄、IVU剛MMW)R,t⑴11,義申,2/a七平廠/tMiq,勰電,b使得曲Sbbolbv(嵌入定理)蹲到i理得到依約UisCWMftW, m約(U兇GMGIIAU隊(duì)因此 ー...金岫曲('414加)バ兩(エ)卬▽%)+(叫▽”,▽如)組T閘覇?一船".1)/2.衢?(($22龍左邊第邊?的顫得到(叫か叫駆憾@依|酢娟兇取及段0跳E{(t).(<332)猴邊在印通在上積分并利用處理玲鶏殯比理2的到區(qū)(“⑼甘)ゆ響?!河?jì)iiawH)112+11ペ曠=?7(M〃,K)JV),且旭制電4聞ラ機(jī)K)2“?于是,定理3誣単.定理Iよ帆明J4如{{8,呢-Mr朝剛耳ー細(xì)ル加風(fēng)胸M一(I〇,へ,K)く耳)的r網(wǎng)而ア。sk電雖4受F6小川タお封庭聃我躺母岫44禮疇K粹腌窯且包含,個(gè)包含原點(diǎn)的小辣.事實(shí)上、由著區(qū)q%4,k)=/i,所以?6伽]一帽?陀g峨到國(guó)圖!甲?△蝙!k!ダ,u。I|<a翱停賽ゆ休い4當(dāng)h馬磊他科她,d)時(shí),IG%"1,厘)うム(,中)-Ii1<E嗽(嫡咐)包屮。ザ巨朋V俛獵珊艇得ん紋駅テ剪用是1,<K—g,于是砲j。び1I與%Jt+4<K/6-V七*+め<K-s+E=K所以,霸I端空.我側(cè)慚定,如果加,同と縛那么調(diào)鄰麻撕刷j生存我H滿落且滿足IIAMHSKii<k和IIM(曲||MK)1l<K并且在〇)叫上。由引理引理即虱!(マ聯(lián)州耐&<")||},£曲伽如WaG(卻ん曲(VKい)Sa(Io,A,K)<K且(啲,喩t攤麻,)事實(shí)且事實(shí)上鍛設(shè)儕海代百(at>,使得,使得國(guó)外蜘(切?碌e檢,不(依イ)0%樞】))依用《礦),ut(ず))垂SK那么有?E(B(tfD,E.(W))》用食Ku(r)),K)>K即厶+(?曲ナ,小聞性!?毒凈p/Tキ我囿)(*)得后既脛網(wǎng)如。%《糕4神都た算環(huán)%南七鮑卜?雅達(dá)ず箱')矛盾,于是他(姚?(り)ta5*)e&困船,菴(電則!)畫(huà)品^聴眩則隱擁仙(ぬ仍同于Sわ我纖可馭軍流或鐘班:述過(guò)程,據(jù)“碗な但冊(cè)時(shí)整體存靠且僅W,ル⑻?s.ut(t))es.定理4證希.R七ferencesI周民強(qiáng),實(shí)變函數(shù)論,北京大學(xué)出版社,北京]劉亞成,劉大成.ー類三維非線性擬雙曲方程的初邊值問(wèn)題。數(shù)學(xué)年刊,1988,9A:2I3—2233]YaHgzliaDtG10IIaI existence,asymptoticbehavoirandblowupof$oIutiaonsforclassofnonIinearwaveequationswithdissipativeterm.J.DifferentialEquationI87(2003)520-540.WJ.LLiois,QuMqu” mathodesitResolutiondesProbIhmeauxLinitesNons s1in6aires*Dunod,Paris*1969.[5]hi D.D?Onawaveequatio<ithnoniineastrongdamping.Non1ncarn rAnal*V01.15.No.11PP.1005—1015,1990.ノノヨ81 D.D..01 ?stronglydampedquasilinearwaveequation.Demonst.Math19,327340(1986).[7]P.MlftiD(Z,A newmethodtoobtainra1,estimatesfordissipativesydecay s_terns,ESAIMControOptim.Ca1C,Var.4(1999)419—444.IIi]PICS111 M.A.Forcedoscillationforthesolutionsofnonlinearhypcequat!〇n.erbo1iNonineaAna16,209—216(1982).rl9]T.MstSUyilJIBtOoglobilsolutionsandenergydecaforthewaveequationsofkiy rch一hofftypewithnonIIndampingterms.J.MathAna?App204,729—753(1996)1ear1Q]L,NirtDbtff.Odellipticpartialdifferentialequations,Anna11dellaSeoulaNorm.sup.pisa,13(1959).115-162lljYangZbijiao.Existenceandasymptoticbehaviourofsolutionsf?c)ass〇fqua.siiin-terms.MathMethApp1terms.MathMethApp1SCi,2002,25:795-81424References[1]周民強(qiáng),實(shí)變函數(shù)論,北京大學(xué)出版社,北京[2I劉亞成,劉大成,ー類三維非線性擬雙曲方程的初邊值問(wèn)翹,數(shù)學(xué)年刊,1988,9A:213-223YangZhipan,Globalexistence、asymptoticbehftvoirandblowupofsolutionsforaclassofnonlinearwaveequationswithdiseipativetermJDifferentialEquation187(2003)520.540.J.L.Lkm&QuelquesmethodesdeResolutionsdesProbl^mesauxLimiteeNonlin6aires,Dunod,Paris,1969.HaiD,D..Onawaveequationwith)MM>linearstrongdamping.NonlnearAnaLVoU5.No.llPP.1005-1015,1990.HaiD.D.OnastronglydampedquasilinearwaveequationDetnonst.Math19,327-340a殿).P.Martinez,Anewmethodtoobtaindecayrateeetimaksfordissipativesystems,ESAIMControlOptim.Calc,Var.4{1999)419-444.PrestelM.A.Forc?doedllationfortheRnluUonsofnonlinearhyperbolicequation.NonlnearAna16,20gl6(1982).T.Matsuyama,OnglobalsolutionsandenemydecayforthewaveequationRofkirchhofftypewithoonlineardampingterms.J.MathAnalAppl204,729-753(1996)L.Nirenberg.Onellipticpartialdifferentialequations,AnnalidellaScoulaNormsup.pi8Al3(1959).11&162YangZhijian.Existenceandasymptoticbehaviourofsolutionsforaclassofquasilin-earevolutionequationswithnonlineardampingandsourceterms.MathMethApplSd,2002,25795-514Zbijiaa.Globalexistenceandasymptoticbehaviourof{〇!u?non11neartionstoZbijiaa.Globalev〇!utionequation.NonIinearStudies,2002,9:283—298[13)CIliBGuowang,YangZhijian.ZhaoZhancai.Initialvalueproblemsandfirstboundaryproblemsfor,classofquasilinearwaveequation.ActaMath.App1.1993,9:288-301[14]Cb60Guowang.ClassicalsolutionoftheinitialboundaryvalueprobIe?c1assmsforofnmflinearparabolicequation.Comment.Math.Univ.Carolinae,1994,35:431443L5jD.A.?.DIHh.MiHl! problemforsemiIinearwaveequat?nonhomogeneousionwithcondition.Non1inearAna11988?12:581.592[1f.N.T.LongtA.PNDinh.Asemitineaxwaveequationassociaa1ineXIdiIferentiledwitha1equationwithcauchydata.NonlinearAnal*1995,24:126localiZeddegeneratedissipation.Nonline1localiZeddegeneratedissipation.Nonlineforthequasi1inearwave118]Friedtnana.Partialston,1118]Friedtnana.Partialston,1969.Yacheng.Zhathnon11n_utdampingand.〇uChenFengxin,GuBqI0DifferentialEquations.NewYork:HoIt.ReinhartaWin一ndoJunsheng.Muitidimensionalviscoelasticityequationswi「terms.NonhnearAn56(2004)851,.865aIingJaDgPing.Longtimebehaviorordampednon1ine缸waIVetqutiooU.Diff?feOtillEquation,1982,44,306-341Ball.StabilitytheoryforaIIextensiblebeam.JDifferentialEquation.1973.14:399.418J!]H.Isbii.Aijoiptoticdblowing-upJ!]H.Isbii.Aijoiptoticdblowing-upof80menonequations.J.DifferentialEquation,1977,26:091.319f2JjM.Fecan.FreevibrtiQiuofbeams〇nbearingswithnonI1nea re-r$po$e$,JDifierentialEquation,1999.154:55—72YangZhijian.Globdexistenceandasymptoticbehaviouro(solutionstoanonlinearevolutionequation.NonlinearStudi懐20029283■298ChmGuwang,YangZhijianrZhaoZhancatInitialvalueproblemsandfirstbouodaryproblemsforaclassofquasilinearwaveequation.ActaMath.Appl.1993,9:288-301ChenGuowang.Ch&sicalsolutionoftheinitialboundaryvalueproblemsforaclassofnonlinearparabolicequation.Comment.Math.Univ.Carolinaet1994T35:431443D.A.RDinh.Mixedproblemforsemilinearwaveequationwithanonhomogeneouscondition.NonlinearAnall988J2:581-592N.T.Long.ARNDinh.Asemilioearwaveequationaroociatedwithalineardifferentialequationwithcauchydata.NonlinearAnal,1995,24:1261-1279M.Nakao.Globalexistenceofsmoothdulutionstotheinitial-boundaryvalueproblemforthequaflilinearwaveequationwithalocalizeddegeneratedissipatiotLNonlinearAnd,2000,39:187-2(15FriedmanA.PartialDifferentialEquations.NewYork:HolttReinhartandWinston.1969.LiuYacheng.ZhaoJunslieng.Multidiniensionaiviscoelasticityequationswithnonlineardampingandsourceterms.N而inearAnal56(2004)851-865ChenFenpdn,GuoBoling,WangPing.Longtimebehaviorofdampednonlinearwaveequation.J.DifferentialEquationJ982.44:306<341BalLS(両!itytheoryforanextensiblebeam.J.DifferentialEqi3icm,973J4:39M18H.Ishii.Asymptoticstabilityandblowing.upofsome nonlinearcqiiations.J.Differenti&lEquation,1977,26:091-319[23J M.FecAn.Freevibrationsof beeuns onbearingswith nonlinear elasticrespores.JDifferentialEquation,1999,154:55-7224]G.AojreihJ.m.9sl1,AsymHOtic behaviourandchangesofphaseinone—dimensionnon!inearviseoelastieity.J.DifferentialEquation,1982,44:306—34II25]NfikidtM.(EdBrjydecaydth。waveequatiowith'degeneratdissipativen eterm.Proc.RoyalSocietyEdinburgh.1〇〇,19-27(1985)A,K]Nlho>N,?EliStfOtf ofglobalsmooths〇1utionstotheinitial.boundaryvalueprob1em(orthequasi-linearwaveequation.degeneratedissipativeterm,J.DifferentiaIwithEquation,98,229-327(1992):27]N8k8O.M.,EnergydecayイthewaveequatiowithBnonlineardissipativenterms,Funk.Ekv.,26,237-250(1983):ZSlNsHOiM.tAiyntplHic s11biIitrorihebound"almostperiodicsolutionofed thewaveequationwithnonlinearditem,J.M8th.AnaI.AppI.,5S,336-343(1977)$sipative:29jNik8B.M.?DiCifofsolutionsofthewaveequationswithsomelocalIzedd1ss1pa.tions,Non1inearAna1yjiT.M.A.,30,3775—3784(1997)$:31}]ZlSZUSfE..ElpOIMti81 decayforthesemi1inearwaveequationwith1oca1yd1s—,riku,ddamping,Comm.P.D.E.,15,205-235(1990)ZuazuatE.,Exponentialdecayforthesemi1inearwaveequationwith1oca1izeddamp-inginunboundeddomains,J.Malh.purappj,,7。,513—529(1992)32]IkaWa,M.,MiIedproblemf0rhyperbol1equatlo0fseconds c nsorder,J.Math.S0c.Japan,20,580—608(1968)^3]LioohJ.1.,Eltct controllBbility<stibilixitionpertubationsfordistributedsys-34]G.Andrews.0nterns,SIAMReview,30,1—68(1988)34]G.Andrews.0n0fs0Iutionst0theequationun=p("£)+u耐)z.J.DifferentialEquation,1980,35t200—23135]J-GreenbergtOntheexistence,uniquenessastabilityoftheequatp〇xt充=nd i〇nE(咒)咒z十五㈣J.Math.Anna1.App1.25(1969"、575159しG.Andrews,Xm.Ball.Asymptoticbehaviourandchangesofphaseinone-dimensionnonlinearviscoelasticityJ.Differential£q&ation,1982,44:30^-341Nakao,M.tEnergjrdecayforthewaveequationwithadegeneratedissipativetenn,Proc.RoyalSocietyEdinburghtA100J9-27(1985)Nakao,M.,Existenceofglobalsmoothsolutionstotheinitial-boundaryvuJueproblemforthequasi-linearwaveequationwithadegeneratedissipativeterm,J.DifferentialEquation,98,229-327(1992)NakaOiM.,Energydeoyofthewaveequationwithanonlineardissipativeterms,Funk.Ekv.,26,237-250(1983)Nakao’M.^Asymptoticstabilityoftheboundedoralmostj>eriodicsolutionofthewaveequationwithnonlinear

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論