2022年貴州省遵義市高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第1頁(yè)
2022年貴州省遵義市高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第2頁(yè)
2022年貴州省遵義市高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第3頁(yè)
2022年貴州省遵義市高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第4頁(yè)
2022年貴州省遵義市高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.82.設(shè)函數(shù)(,為自然對(duì)數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當(dāng)時(shí),.若存在,且為函數(shù)的一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.3.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm34.已知向量,,若,則與夾角的余弦值為()A. B. C. D.5.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.6.已知曲線且過(guò)定點(diǎn),若且,則的最小值為().A. B.9 C.5 D.7.已知雙曲線的左、右頂點(diǎn)分別是,雙曲線的右焦點(diǎn)為,點(diǎn)在過(guò)且垂直于軸的直線上,當(dāng)?shù)耐饨訄A面積達(dá)到最小時(shí),點(diǎn)恰好在雙曲線上,則該雙曲線的方程為()A. B.C. D.8.已知函數(shù)是上的偶函數(shù),且當(dāng)時(shí),函數(shù)是單調(diào)遞減函數(shù),則,,的大小關(guān)系是()A. B.C. D.9.已知函數(shù).若存在實(shí)數(shù),且,使得,則實(shí)數(shù)a的取值范圍為()A. B. C. D.10.已知的面積是,,,則()A.5 B.或1 C.5或1 D.11.集合,,則()A. B. C. D.12.設(shè),則關(guān)于的方程所表示的曲線是()A.長(zhǎng)軸在軸上的橢圓 B.長(zhǎng)軸在軸上的橢圓C.實(shí)軸在軸上的雙曲線 D.實(shí)軸在軸上的雙曲線二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為銳角,若,則的值為_(kāi)___________.14.在編號(hào)為1,2,3,4,5且大小和形狀均相同的五張卡片中,一次隨機(jī)抽取其中的三張,則抽取的三張卡片編號(hào)之和是偶數(shù)的概率為_(kāi)_______.15.用數(shù)字、、、、、組成無(wú)重復(fù)數(shù)字的位自然數(shù),其中相鄰兩個(gè)數(shù)字奇偶性不同的有_____個(gè).16.設(shè)函數(shù),,其中.若存在唯一的整數(shù)使得,則實(shí)數(shù)的取值范圍是_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在矩形中,,,點(diǎn)是邊上一點(diǎn),且,點(diǎn)是的中點(diǎn),將沿著折起,使點(diǎn)運(yùn)動(dòng)到點(diǎn)處,且滿足.(1)證明:平面;(2)求二面角的余弦值.18.(12分)如圖,在四棱錐P—ABCD中,四邊形ABCD為平行四邊形,BD⊥DC,△PCD為正三角形,平面PCD⊥平面ABCD,E為PC的中點(diǎn).(1)證明:AP∥平面EBD;(2)證明:BE⊥PC.19.(12分)設(shè)函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.20.(12分)已知矩陣的逆矩陣.若曲線:在矩陣A對(duì)應(yīng)的變換作用下得到另一曲線,求曲線的方程.21.(12分)在中,角的對(duì)邊分別為,且.(1)求角的大??;(2)若,求邊上的高.22.(10分)已知函數(shù)f(x)=x(1)討論fx(2)當(dāng)x≥-1時(shí),fx+a

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

由三視圖還原出原幾何體,得出幾何體的結(jié)構(gòu)特征,然后計(jì)算體積.【詳解】由三視圖知原幾何體是一個(gè)四棱錐,四棱錐底面是邊長(zhǎng)為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點(diǎn)睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關(guān)鍵.2、D【解析】

先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對(duì)函數(shù)求導(dǎo),判斷其單調(diào)性,進(jìn)而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因?yàn)?,所以,所以為奇函?shù),當(dāng)時(shí),,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因?yàn)榇嬖?,所以,所以,化?jiǎn)得,所以,即令,因?yàn)闉楹瘮?shù)的一個(gè)零點(diǎn),所以在時(shí)有一個(gè)零點(diǎn)因?yàn)楫?dāng)時(shí),,所以函數(shù)在時(shí)單調(diào)遞減,由選項(xiàng)知,,又因?yàn)椋砸乖跁r(shí)有一個(gè)零點(diǎn),只需使,解得,所以a的取值范圍為,故選D.【點(diǎn)睛】本題主要考查函數(shù)與方程的綜合問(wèn)題,難度較大.3、B【解析】試題分析:該幾何體上面是長(zhǎng)方體,下面是四棱柱;長(zhǎng)方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點(diǎn):三視圖和幾何體的體積.4、B【解析】

直接利用向量的坐標(biāo)運(yùn)算得到向量的坐標(biāo),利用求得參數(shù)m,再用計(jì)算即可.【詳解】依題意,,而,即,解得,則.故選:B.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算、向量數(shù)量積的應(yīng)用,考查運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想.5、C【解析】

由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時(shí)雙曲線,則曲線的離心率為,故選C.【點(diǎn)睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程及其簡(jiǎn)單的幾何性質(zhì)的應(yīng)用,其中解答中熟記雙曲線的幾何性質(zhì),準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.6、A【解析】

根據(jù)指數(shù)型函數(shù)所過(guò)的定點(diǎn),確定,再根據(jù)條件,利用基本不等式求的最小值.【詳解】定點(diǎn)為,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,即時(shí)取得最小值.故選:A【點(diǎn)睛】本題考查指數(shù)型函數(shù)的性質(zhì),以及基本不等式求最值,意在考查轉(zhuǎn)化與變形,基本計(jì)算能力,屬于基礎(chǔ)題型.7、A【解析】

點(diǎn)的坐標(biāo)為,,展開(kāi)利用均值不等式得到最值,將點(diǎn)代入雙曲線計(jì)算得到答案.【詳解】不妨設(shè)點(diǎn)的坐標(biāo)為,由于為定值,由正弦定理可知當(dāng)取得最大值時(shí),的外接圓面積取得最小值,也等價(jià)于取得最大值,因?yàn)?,,所以,?dāng)且僅當(dāng),即當(dāng)時(shí),等號(hào)成立,此時(shí)最大,此時(shí)的外接圓面積取最小值,點(diǎn)的坐標(biāo)為,代入可得,.所以雙曲線的方程為.故選:【點(diǎn)睛】本題考查了求雙曲線方程,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.8、D【解析】

利用對(duì)數(shù)函數(shù)的單調(diào)性可得,再根據(jù)的單調(diào)性和奇偶性可得正確的選項(xiàng).【詳解】因?yàn)?,,?又,故.因?yàn)楫?dāng)時(shí),函數(shù)是單調(diào)遞減函數(shù),所以.因?yàn)闉榕己瘮?shù),故,所以.故選:D.【點(diǎn)睛】本題考查抽象函數(shù)的奇偶性、單調(diào)性以及對(duì)數(shù)函數(shù)的單調(diào)性在大小比較中的應(yīng)用,比較大小時(shí)注意選擇合適的中間數(shù)來(lái)傳遞不等關(guān)系,本題屬于中檔題.9、D【解析】

首先對(duì)函數(shù)求導(dǎo),利用導(dǎo)數(shù)的符號(hào)分析函數(shù)的單調(diào)性和函數(shù)的極值,根據(jù)題意,列出參數(shù)所滿足的不等關(guān)系,求得結(jié)果.【詳解】,令,得,.其單調(diào)性及極值情況如下:x0+0_0+極大值極小值若存在,使得,則(如圖1)或(如圖2).(圖1)(圖2)于是可得,故選:D.【點(diǎn)睛】該題考查的是有關(guān)根據(jù)函數(shù)值的關(guān)系求參數(shù)的取值范圍的問(wèn)題,涉及到的知識(shí)點(diǎn)有利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,畫(huà)出圖象數(shù)形結(jié)合,屬于較難題目.10、B【解析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.11、A【解析】

計(jì)算,再計(jì)算交集得到答案.【詳解】,,故.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,屬于簡(jiǎn)單題.12、C【解析】

根據(jù)條件,方程.即,結(jié)合雙曲線的標(biāo)準(zhǔn)方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,

方程,即,表示實(shí)軸在y軸上的雙曲線,

故選C.【點(diǎn)睛】本題考查雙曲線的標(biāo)準(zhǔn)方程的特征,依據(jù)條件把已知的曲線方程化為是關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

∵為銳角,,∴,∴,,故.14、【解析】

先求出所有的基本事件個(gè)數(shù),再求出“抽取的三張卡片編號(hào)之和是偶數(shù)”這一事件包含的基本事件個(gè)數(shù),利用古典概型的概率計(jì)算公式即可算出結(jié)果.【詳解】一次隨機(jī)抽取其中的三張,所有基本事件為:1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10個(gè),其中“抽取的三張卡片編號(hào)之和是偶數(shù)”包含6個(gè)基本事件,因此“抽取的三張卡片編號(hào)之和是偶數(shù)”的概率為:.故答案為:.【點(diǎn)睛】本題考查了古典概型及其概率計(jì)算公式,屬于基礎(chǔ)題.15、【解析】

對(duì)首位數(shù)的奇偶進(jìn)行分類討論,利用分步乘法計(jì)數(shù)原理和分類加法計(jì)數(shù)原理可得出結(jié)果.【詳解】①若首位為奇數(shù),則第一、三、五個(gè)數(shù)位上的數(shù)都是奇數(shù),其余三個(gè)數(shù)位上的數(shù)為偶數(shù),此時(shí),符號(hào)條件的位自然數(shù)個(gè)數(shù)為個(gè);②若首位數(shù)為偶數(shù),則首位數(shù)不能為,可排在第三或第五個(gè)數(shù)位上,第二、四、六個(gè)數(shù)位上的數(shù)為奇數(shù),此時(shí),符合條件的位自然數(shù)個(gè)數(shù)為個(gè).綜上所述,符合條件的位自然數(shù)個(gè)數(shù)為個(gè).故答案為:.【點(diǎn)睛】本題考查數(shù)的排列問(wèn)題,要注意首位數(shù)字的分類討論,考查分步乘法計(jì)數(shù)和分類加法計(jì)數(shù)原理的應(yīng)用,考查計(jì)算能力,屬于中等題.16、【解析】

根據(jù)分段函數(shù)的解析式畫(huà)出圖像,再根據(jù)存在唯一的整數(shù)使得數(shù)形結(jié)合列出臨界條件滿足的關(guān)系式求解即可.【詳解】解:函數(shù),且畫(huà)出的圖象如下:因?yàn)?且存在唯一的整數(shù)使得,故與在時(shí)無(wú)交點(diǎn),,得;又,過(guò)定點(diǎn)又由圖像可知,若存在唯一的整數(shù)使得時(shí),所以,存在唯一的整數(shù)使得所以.根據(jù)圖像可知,當(dāng)時(shí),恒成立.綜上所述,存在唯一的整數(shù)使得,此時(shí)故答案為:【點(diǎn)睛】本題主要考查了數(shù)形結(jié)合分析參數(shù)范圍的問(wèn)題,需要根據(jù)題意分別分析定點(diǎn)右邊的整數(shù)點(diǎn)中為滿足條件的唯一整數(shù),再數(shù)形結(jié)合列出時(shí)的不等式求的范圍.屬于難題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)【解析】

(1)取的中點(diǎn),連接,,由,進(jìn)而,由,得.進(jìn)而平面,進(jìn)而結(jié)論可得證(2)(方法一)過(guò)點(diǎn)作的平行線交于點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,求得平面平面的法向量,由二面角公式求解即可(方法二)取的中點(diǎn),上的點(diǎn),使,連接,得,,得二面角的平面角為,再求解即可【詳解】(1)證明:取的中點(diǎn),連接,,由已知得,所以,又點(diǎn)是的中點(diǎn),所以.因?yàn)?,點(diǎn)是線段的中點(diǎn),所以.又因?yàn)?,所以,從而平面,所以,又,不平行,所以平?(2)(方法一)由(1)知,過(guò)點(diǎn)作的平行線交于點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,則點(diǎn),,,,所以,,.設(shè)平面的法向量為,由,得,令,得.同理,設(shè)平面的法向量為,由,得,令,得.所以二面角的余弦值為.(方法二)取的中點(diǎn),上的點(diǎn),使,連接,易知,.由(1)得,所以平面,所以,又,所以平面,所以二面角的平面角為.又計(jì)算得,,,所以.【點(diǎn)睛】本題考查線面垂直的判定,考查空間向量求二面角,考查空間想象及計(jì)算能力,是中檔題18、(1)見(jiàn)解析(2)見(jiàn)解析【解析】

(1)連結(jié)AC交BD于點(diǎn)O,連結(jié)OE,利用三角形中位線可得AP∥OE,從而可證AP∥平面EBD;(2)先證明BD⊥平面PCD,再證明PC⊥平面BDE,從而可證BE⊥PC.【詳解】證明:(1)連結(jié)AC交BD于點(diǎn)O,連結(jié)OE因?yàn)樗倪呅蜛BCD為平行四邊形∴O為AC中點(diǎn),又E為PC中點(diǎn),故AP∥OE,又AP平面EBD,OE平面EBD所以AP∥平面EBD

;(2)∵△PCD為正三角形,E為PC中點(diǎn)所以PC⊥DE因?yàn)槠矫鍼CD⊥平面ABCD,平面PCD平面ABCD=CD,又BD平面ABCD,BD⊥CD∴BD⊥平面PCD又PC平面PCD,故PC⊥BD又BDDE=D,BD平面BDE,DE平面BDE故PC⊥平面BDE又BE平面BDE,所以BE⊥PC.【點(diǎn)睛】本題主要考查空間位置關(guān)系的證明,線面平行一般轉(zhuǎn)化為線線平行來(lái)證明,直線與直線垂直通常利用線面垂直來(lái)進(jìn)行證明,側(cè)重考查邏輯推理的核心素養(yǎng).19、(1)(2)的遞減區(qū)間為和【解析】

(1)化簡(jiǎn)函數(shù),代入,計(jì)算即可;(2)先利用正弦函數(shù)的圖象與性質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間,再結(jié)合即可求出.【詳解】(1),從而.(2)令.解得.即函數(shù)的所有減區(qū)間為,考慮到,取,可得,,故的遞減區(qū)間為和.【點(diǎn)睛】本題主要考查了三角函數(shù)的恒等變形,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.20、【解析】

根據(jù),可解得,設(shè)為曲線任一點(diǎn),在矩陣對(duì)應(yīng)的變換作用下得到點(diǎn),則點(diǎn)在曲線上,根據(jù)變換的定義寫(xiě)出相應(yīng)的矩陣等式,再用表示出,代入曲線的方程中,即得.【詳解】,,即.,解得,.設(shè)為曲線任一點(diǎn),則,又設(shè)在矩陣A變換作用得到點(diǎn),則,即,所以即代入,得,所以曲線的方程為.【點(diǎn)睛】本題考查逆矩陣,矩陣與變換等,是基礎(chǔ)題.21、(1);(2)【解析】

(1)利用正弦定理將邊化成角,可得,展開(kāi)并整理可得,從而可求出角;(2)由余弦定理得,進(jìn)而可得,由,可求出的值,設(shè)邊上的高為,可得的面積為,從而可求出.【詳解】(1)由題意,由正弦定理得.因?yàn)?,所以,所以,展開(kāi)得,整理得.因?yàn)?,所以,故,?(2)由余弦定理得,則,得,故,故的面積為.設(shè)邊上的高為,有,故,所以邊上的高為.【點(diǎn)睛】本題考查正弦、余弦定理在解三角形中的應(yīng)用,考查三角形的面積公式的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于中檔題.22、(1)見(jiàn)解析;(2)-∞,1【解析】

(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).對(duì)a分類討論,即可得出單調(diào)性.

(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,當(dāng)x=-1時(shí),0≤-1e+1恒成立.當(dāng)x>-1時(shí),a≤xe【詳解】解法一:(1)f①當(dāng)a≤0時(shí),x(-∞-1(-1,+∞)f-0+f(x)↘極小值↗所以f(x)在(-∞,-1)上單調(diào)遞減,在(-1,+∞)單調(diào)遞增.②當(dāng)a>0時(shí),f'(x)=0的根為x=ln若lna>-1,即a>x(-∞,-1)-1(-1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論