2022年湖南省衡陽縣數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)測(cè)試試題含解析_第1頁
2022年湖南省衡陽縣數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)測(cè)試試題含解析_第2頁
2022年湖南省衡陽縣數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)測(cè)試試題含解析_第3頁
2022年湖南省衡陽縣數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)測(cè)試試題含解析_第4頁
2022年湖南省衡陽縣數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)測(cè)試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的圖象為C,以下結(jié)論中正確的是()①圖象C關(guān)于直線對(duì)稱;②圖象C關(guān)于點(diǎn)對(duì)稱;③由y=2sin2x的圖象向右平移個(gè)單位長(zhǎng)度可以得到圖象C.A.① B.①② C.②③ D.①②③2.設(shè)函數(shù)(,)是上的奇函數(shù),若的圖象關(guān)于直線對(duì)稱,且在區(qū)間上是單調(diào)函數(shù),則()A. B. C. D.3.已知定義在上函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,且,若,則()A.0 B.1 C.673 D.6744.已知函數(shù).下列命題:①函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱;②函數(shù)是周期函數(shù);③當(dāng)時(shí),函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒有公共點(diǎn),其中正確命題的序號(hào)是()A.①④ B.②③ C.①③④ D.①②④5.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.6.已知橢圓的焦點(diǎn)分別為,,其中焦點(diǎn)與拋物線的焦點(diǎn)重合,且橢圓與拋物線的兩個(gè)交點(diǎn)連線正好過點(diǎn),則橢圓的離心率為()A. B. C. D.7.是虛數(shù)單位,復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.函數(shù)的對(duì)稱軸不可能為()A. B. C. D.9.已知為實(shí)數(shù)集,,,則()A. B. C. D.10.記等差數(shù)列的公差為,前項(xiàng)和為.若,,則()A. B. C. D.11.若復(fù)數(shù)滿足,則的虛部為()A.5 B. C. D.-512.已知,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從一箱產(chǎn)品中隨機(jī)地抽取一件,設(shè)事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,則事件“抽到的產(chǎn)品不是一等品”的概率為________14.設(shè)點(diǎn)P在函數(shù)的圖象上,點(diǎn)Q在函數(shù)的圖象上,則線段PQ長(zhǎng)度的最小值為_________15.設(shè)等比數(shù)列的前項(xiàng)和為,若,則數(shù)列的公比是.16.已知數(shù)列的前項(xiàng)和公式為,則數(shù)列的通項(xiàng)公式為___.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的四個(gè)頂點(diǎn)圍成的四邊形的面積為,原點(diǎn)到直線的距離為.(1)求橢圓的方程;(2)已知定點(diǎn),是否存在過的直線,使與橢圓交于,兩點(diǎn),且以為直徑的圓過橢圓的左頂點(diǎn)?若存在,求出的方程:若不存在,請(qǐng)說明理由.18.(12分)已知函數(shù),其中為實(shí)常數(shù).(1)若存在,使得在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍;(2)當(dāng)時(shí),設(shè)直線與函數(shù)的圖象相交于不同的兩點(diǎn),,證明:.19.(12分)已知定點(diǎn),,直線、相交于點(diǎn),且它們的斜率之積為,記動(dòng)點(diǎn)的軌跡為曲線。(1)求曲線的方程;(2)過點(diǎn)的直線與曲線交于、兩點(diǎn),是否存在定點(diǎn),使得直線與斜率之積為定值,若存在,求出坐標(biāo);若不存在,請(qǐng)說明理由。20.(12分)設(shè)為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在橢圓:上,該橢圓的左頂點(diǎn)到直線的距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若橢圓外一點(diǎn)滿足,平行于軸,,動(dòng)點(diǎn)在直線上,滿足.設(shè)過點(diǎn)且垂直的直線,試問直線是否過定點(diǎn)?若過定點(diǎn),請(qǐng)寫出該定點(diǎn),若不過定點(diǎn)請(qǐng)說明理由.21.(12分)如圖,在三棱錐中,,是的中點(diǎn),點(diǎn)在上,平面,平面平面,為銳角三角形,求證:(1)是的中點(diǎn);(2)平面平面.22.(10分)已知函數(shù)(,),.(Ⅰ)討論的單調(diào)性;(Ⅱ)若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)三角函數(shù)的對(duì)稱軸、對(duì)稱中心和圖象變換的知識(shí),判斷出正確的結(jié)論.【詳解】因?yàn)?,又,所以①正確.,所以②正確.將的圖象向右平移個(gè)單位長(zhǎng)度,得,所以③錯(cuò)誤.所以①②正確,③錯(cuò)誤.故選:B【點(diǎn)睛】本小題主要考查三角函數(shù)的對(duì)稱軸、對(duì)稱中心,考查三角函數(shù)圖象變換,屬于基礎(chǔ)題.2、D【解析】

根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對(duì)稱軸及單調(diào)性即可確定的值,進(jìn)而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關(guān)于直線對(duì)稱可得,,即,,由函數(shù)的單調(diào)區(qū)間知,,即,綜上,則,.故選:D【點(diǎn)睛】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,由對(duì)稱軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.3、B【解析】

由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個(gè)周期內(nèi)的和是0,利用函數(shù)周期性對(duì)所求式子進(jìn)行化簡(jiǎn)可得.【詳解】因?yàn)闉槠婧瘮?shù),故;因?yàn)椋?,可知函?shù)的周期為3;在中,令,故,故函數(shù)在一個(gè)周期內(nèi)的函數(shù)值和為0,故.故選:B.【點(diǎn)睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問題多考查求值問題,常利用奇偶性及周期性進(jìn)行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.4、A【解析】

根據(jù)奇偶性的定義可判斷出①正確;由周期函數(shù)特點(diǎn)知②錯(cuò)誤;函數(shù)定義域?yàn)椋钪迭c(diǎn)即為極值點(diǎn),由知③錯(cuò)誤;令,在和兩種情況下知均無零點(diǎn),知④正確.【詳解】由題意得:定義域?yàn)椋?,為奇函?shù),圖象關(guān)于原點(diǎn)對(duì)稱,①正確;為周期函數(shù),不是周期函數(shù),不是周期函數(shù),②錯(cuò)誤;,,不是最值,③錯(cuò)誤;令,當(dāng)時(shí),,,,此時(shí)與無交點(diǎn);當(dāng)時(shí),,,,此時(shí)與無交點(diǎn);綜上所述:與無交點(diǎn),④正確.故選:.【點(diǎn)睛】本題考查函數(shù)與導(dǎo)數(shù)知識(shí)的綜合應(yīng)用,涉及到函數(shù)奇偶性和周期性的判斷、函數(shù)最值的判斷、兩函數(shù)交點(diǎn)個(gè)數(shù)問題的求解;本題綜合性較強(qiáng),對(duì)于學(xué)生的分析和推理能力有較高要求.5、C【解析】

利用基本初等函數(shù)的單調(diào)性判斷各選項(xiàng)中函數(shù)在區(qū)間上的單調(diào)性,進(jìn)而可得出結(jié)果.【詳解】對(duì)于A選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對(duì)于B選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對(duì)于C選項(xiàng),函數(shù)在區(qū)間上為減函數(shù);對(duì)于D選項(xiàng),函數(shù)在區(qū)間上為增函數(shù).故選:C.【點(diǎn)睛】本題考查函數(shù)在區(qū)間上單調(diào)性的判斷,熟悉一些常見的基本初等函數(shù)的單調(diào)性是判斷的關(guān)鍵,屬于基礎(chǔ)題.6、B【解析】

根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì)、拋物線的幾何性質(zhì),考查了學(xué)生的計(jì)算能力,屬于中檔題7、D【解析】

求出復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo),即可得出結(jié)論.【詳解】復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,該點(diǎn)位于第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)對(duì)應(yīng)的點(diǎn)的位置的判斷,屬于基礎(chǔ)題.8、D【解析】

由條件利用余弦函數(shù)的圖象的對(duì)稱性,得出結(jié)論.【詳解】對(duì)于函數(shù),令,解得,當(dāng)時(shí),函數(shù)的對(duì)稱軸為,,.故選:D.【點(diǎn)睛】本題主要考查余弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.9、C【解析】

求出集合,,,由此能求出.【詳解】為實(shí)數(shù)集,,,或,.故選:.【點(diǎn)睛】本題考查交集、補(bǔ)集的求法,考查交集、補(bǔ)集的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.10、C【解析】

由,和,可求得,從而求得和,再驗(yàn)證選項(xiàng).【詳解】因?yàn)?,,所以解得,所以,所以,,,故選:C.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式,還考查運(yùn)算求解能力,屬于中檔題.11、C【解析】

把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.12、C【解析】

利用二倍角公式,和同角三角函數(shù)的商數(shù)關(guān)系式,化簡(jiǎn)可得,即可求得結(jié)果.【詳解】,所以,即.故選:C.【點(diǎn)睛】本題考查三角恒等變換中二倍角公式的應(yīng)用和弦化切化簡(jiǎn)三角函數(shù),難度較易.二、填空題:本題共4小題,每小題5分,共20分。13、0.35【解析】

根據(jù)對(duì)立事件的概率和為1,結(jié)合題意,即可求出結(jié)果來.【詳解】解:由題意知本題是一個(gè)對(duì)立事件的概率,抽到的不是一等品的對(duì)立事件是抽到一等品,,抽到不是一等品的概率是,故答案為:.【點(diǎn)睛】本題考查了求互斥事件與對(duì)立事件的概率的應(yīng)用問題,屬于基礎(chǔ)題.14、【解析】

由解析式可分析兩函數(shù)互為反函數(shù),則圖象關(guān)于對(duì)稱,則點(diǎn)到的距離的最小值的二倍即為所求,利用導(dǎo)函數(shù)即可求得最值.【詳解】由題,因?yàn)榕c互為反函數(shù),則圖象關(guān)于對(duì)稱,設(shè)點(diǎn)為,則到直線的距離為,設(shè),則,令,即,所以當(dāng)時(shí),,即單調(diào)遞減;當(dāng)時(shí),,即單調(diào)遞增,所以,則,所以的最小值為,故答案為:【點(diǎn)睛】本題考查反函數(shù)的性質(zhì)的應(yīng)用,考查利用導(dǎo)函數(shù)研究函數(shù)的最值問題.15、.【解析】

當(dāng)q=1時(shí),.當(dāng)時(shí),,所以.16、【解析】

由題意,根據(jù)數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系,即可求得數(shù)列的通項(xiàng)公式.【詳解】由題意,可知當(dāng)時(shí),;當(dāng)時(shí),.又因?yàn)椴粷M足,所以.【點(diǎn)睛】本題主要考查了利用數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系求解數(shù)列的通項(xiàng)公式,其中解答中熟記數(shù)列的通項(xiàng)與前n項(xiàng)和之間的關(guān)系,合理準(zhǔn)確推導(dǎo)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,且方程為或.【解析】

(1)依題意列出關(guān)于a,b,c的方程組,求得a,b,進(jìn)而可得到橢圓方程;(2)聯(lián)立直線和橢圓得到,要使以為直徑的圓過橢圓的左頂點(diǎn),則,結(jié)合韋達(dá)定理可得到參數(shù)值.【詳解】(1)直線的一般方程為.依題意,解得,故橢圓的方程式為.(2)假若存在這樣的直線,當(dāng)斜率不存在時(shí),以為直徑的圓顯然不經(jīng)過橢圓的左頂點(diǎn),所以可設(shè)直線的斜率為,則直線的方程為.由,得.由,得.記,的坐標(biāo)分別為,,則,,而.要使以為直徑的圓過橢圓的左頂點(diǎn),則,即,所以,整理解得或,所以存在過的直線,使與橢圓交于,兩點(diǎn),且以為直徑的圓過橢圓的左頂點(diǎn),直線的方程為或.【點(diǎn)睛】本題主要考查直線與圓錐曲線位置關(guān)系,所使用方法為韋達(dá)定理法:因直線的方程是一次的,圓錐曲線的方程是二次的,故直線與圓錐曲線的問題常轉(zhuǎn)化為方程組關(guān)系問題,最終轉(zhuǎn)化為一元二次方程問題,故用韋達(dá)定理及判別式是解決圓錐曲線問題的重點(diǎn)方法之一,尤其是弦中點(diǎn)問題,弦長(zhǎng)問題,可用韋達(dá)定理直接解決,但應(yīng)注意不要忽視判別式的作用.18、(1);(2)見解析.【解析】

(1)將所求問題轉(zhuǎn)化為在上有解,進(jìn)一步轉(zhuǎn)化為函數(shù)最值問題;(2)將所證不等式轉(zhuǎn)化為,進(jìn)一步轉(zhuǎn)化為,然后再通過構(gòu)造加以證明即可.【詳解】(1),根據(jù)題意,在內(nèi)存在單調(diào)減區(qū)間,則不等式在上有解,由得,設(shè),則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以當(dāng)時(shí),,所以存在,使得成立,所以的取值范圍為。(2)當(dāng)時(shí),,則,從而所證不等式轉(zhuǎn)化為,不妨設(shè),則不等式轉(zhuǎn)化為,即,即,令,則不等式轉(zhuǎn)化為,因?yàn)?,則,從而不等式化為,設(shè),則,所以在上單調(diào)遞增,所以即不等式成立,故原不等式成立.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、利用導(dǎo)數(shù)證明不等式,這里要強(qiáng)調(diào)一點(diǎn),在證明不等式時(shí),通常是構(gòu)造函數(shù),將問題轉(zhuǎn)化為函數(shù)的極值或最值來處理,本題是一道有高度的壓軸解答題.19、(1);(2)存在定點(diǎn),見解析【解析】

(1)設(shè)動(dòng)點(diǎn),則,利用,求出曲線的方程.(2)由已知直線過點(diǎn),設(shè)的方程為,則聯(lián)立方程組,消去得,設(shè),,,利用韋達(dá)定理求解直線的斜率,然后求解指向性方程,推出結(jié)果.【詳解】解:(1)設(shè)動(dòng)點(diǎn),則,,,即,化簡(jiǎn)得:。由已知,故曲線的方程為。(2)由已知直線過點(diǎn),設(shè)的方程為,則聯(lián)立方程組,消去得,設(shè),,則又直線與斜率分別為,,則。當(dāng)時(shí),,;當(dāng)時(shí),,。所以存在定點(diǎn),使得直線與斜率之積為定值?!军c(diǎn)睛】本題考查軌跡方程的求法,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查計(jì)算能力,屬于中檔題.20、(1);(2)見解析【解析】

(1)根據(jù)點(diǎn)到直線的距離公式可求出a的值,即可得橢圓方程;(2)由題意M(x0,y0),N(x0,y1),P(2,t),根據(jù),可得y1=2y0,由,可得2x0+2y0t=6,再根據(jù)向量的運(yùn)算可得,即可證明.【詳解】(1)左頂點(diǎn)A的坐標(biāo)為(﹣a,0),∵=,∴|a﹣5|=3,解得a=2或a=8(舍去),∴橢圓C的標(biāo)準(zhǔn)方程為+y2=1,(2)由題意M(x0,y0),N(x0,y1),P(2,t),則依題意可知y1≠y0,得(x0﹣2x0,y1﹣2y0)(0,y1﹣y0)=0,整理可得y1=2y0,或y1=y(tǒng)0(舍),,得(x0,2y0)(2﹣x0,t﹣2y0)=2,整理可得2x0+2y0t=x02+4y02+2=6,由(1)可得F(,0),∴=(﹣x0,﹣2y0),∴?=(﹣x0,﹣2y0)(2,t)=6﹣2x0﹣2y0t=0,∴NF⊥OP,故過點(diǎn)N且垂直于OP的直線過橢圓C的右焦點(diǎn)F.【點(diǎn)睛】本題考查了橢圓方程的求法,直線和橢圓的關(guān)系,向量的運(yùn)算,考查了運(yùn)算求解能力和轉(zhuǎn)化與化歸能力,屬于中檔題.21、(1)證明見解析;(2)證明見解析;【解析】

(1)推導(dǎo)出,由是的中點(diǎn),能證明是有中點(diǎn).(2)作于點(diǎn),推導(dǎo)出平面,從而,由,能證明平面,由此能證明平面平面.【詳解】證明:(1)在三棱錐中,平面,平面平面,平面,,在中,是的中點(diǎn),是有中點(diǎn).(2)在三棱錐中,是銳角三角形,在中,可作于點(diǎn),平面平面,平面平面,平面,平面,平面,,,,平面,平面,平面平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論