




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個(gè)面所在的平面與直線(xiàn)相交的平面?zhèn)€數(shù)分別記為,則下列結(jié)論正確的是()A. B. C. D.2.設(shè),滿(mǎn)足約束條件,則的最大值是()A. B. C. D.3.已知是等差數(shù)列的前項(xiàng)和,若,設(shè),則數(shù)列的前項(xiàng)和取最大值時(shí)的值為()A.2020 B.20l9 C.2018 D.20174.若復(fù)數(shù),則()A. B. C. D.205.已知函數(shù)(),若函數(shù)有三個(gè)零點(diǎn),則的取值范圍是()A. B.C. D.6.已知,,,若,則()A. B. C. D.7.已知,是兩條不重合的直線(xiàn),,是兩個(gè)不重合的平面,則下列命題中錯(cuò)誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則8.中國(guó)古代中的“禮、樂(lè)、射、御、書(shū)、數(shù)”合稱(chēng)“六藝”.“禮”,主要指德育;“樂(lè)”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書(shū)”,指各種歷史文化知識(shí);“數(shù)”,數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開(kāi)展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“樂(lè)”不排在第一節(jié),“射”和“御”兩門(mén)課程不相鄰,則“六藝”課程講座不同的排課順序共有()種.A.408 B.120 C.156 D.2409.已知三棱錐P﹣ABC的頂點(diǎn)都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.10.已知全集,函數(shù)的定義域?yàn)?,集合,則下列結(jié)論正確的是A. B.C. D.11.已知雙曲線(xiàn)的左、右頂點(diǎn)分別為,點(diǎn)是雙曲線(xiàn)上與不重合的動(dòng)點(diǎn),若,則雙曲線(xiàn)的離心率為()A. B. C.4 D.212.某市氣象部門(mén)根據(jù)2018年各月的每天最高氣溫平均數(shù)據(jù),繪制如下折線(xiàn)圖,那么,下列敘述錯(cuò)誤的是()A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大C.全年中各月最低氣溫平均值不高于10°C的月份有5個(gè)D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢(shì)二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù)(為虛數(shù)單位),則的模為_(kāi)___.14.已知滿(mǎn)足且目標(biāo)函數(shù)的最大值為7,最小值為1,則___________.15.已知點(diǎn)M是曲線(xiàn)y=2lnx+x2﹣3x上一動(dòng)點(diǎn),當(dāng)曲線(xiàn)在M處的切線(xiàn)斜率取得最小值時(shí),該切線(xiàn)的方程為_(kāi)______.16.過(guò)點(diǎn),且圓心在直線(xiàn)上的圓的半徑為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,為等腰直角三角形,,D為AC上一點(diǎn),將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線(xiàn)段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.18.(12分)數(shù)列滿(mǎn)足,,其前n項(xiàng)和為,數(shù)列的前n項(xiàng)積為.(1)求和數(shù)列的通項(xiàng)公式;(2)設(shè),求的前n項(xiàng)和,并證明:對(duì)任意的正整數(shù)m、k,均有.19.(12分)已知直線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.(1)求直線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;(2)設(shè)點(diǎn),直線(xiàn)與曲線(xiàn)交于,兩點(diǎn),求的值.20.(12分)在①;②;③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中的橫線(xiàn)上,并解答相應(yīng)的問(wèn)題.在中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿(mǎn)足________________,,求的面積.21.(12分)某房地產(chǎn)開(kāi)發(fā)商在其開(kāi)發(fā)的某小區(qū)前修建了一個(gè)弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米.開(kāi)發(fā)商計(jì)劃從點(diǎn)出發(fā)建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作.設(shè).(1)用表示線(xiàn)段并確定的范圍;(2)為了使小區(qū)居民可以充分地欣賞湖景,所以要將的長(zhǎng)度設(shè)計(jì)到最長(zhǎng),求的最大值.22.(10分)已知數(shù)列,,數(shù)列滿(mǎn)足,n.(1)若,,求數(shù)列的前2n項(xiàng)和;(2)若數(shù)列為等差數(shù)列,且對(duì)任意n,恒成立.①當(dāng)數(shù)列為等差數(shù)列時(shí),求證:數(shù)列,的公差相等;②數(shù)列能否為等比數(shù)列?若能,請(qǐng)寫(xiě)出所有滿(mǎn)足條件的數(shù)列;若不能,請(qǐng)說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)題意,畫(huà)出幾何位置圖形,由圖形的位置關(guān)系分別求得的值,即可比較各選項(xiàng).【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個(gè)面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個(gè)面所在平面均相交,∴,∴結(jié)合四個(gè)選項(xiàng)可知,只有正確.故選:A.【點(diǎn)睛】本題考查了空間幾何體中直線(xiàn)與平面位置關(guān)系的判斷與綜合應(yīng)用,對(duì)空間想象能力要求較高,屬于中檔題.2、D【解析】
作出不等式對(duì)應(yīng)的平面區(qū)域,由目標(biāo)函數(shù)的幾何意義,通過(guò)平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線(xiàn):在可行域內(nèi)平移當(dāng)過(guò)點(diǎn)時(shí),取得最大值.由得:,故選:D【點(diǎn)睛】本題主要考查線(xiàn)性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線(xiàn)性規(guī)劃題目的常用方法,屬于基礎(chǔ)題.3、B【解析】
根據(jù)題意計(jì)算,,,計(jì)算,,,得到答案.【詳解】是等差數(shù)列的前項(xiàng)和,若,故,,,,故,當(dāng)時(shí),,,,,當(dāng)時(shí),,故前項(xiàng)和最大.故選:.【點(diǎn)睛】本題考查了數(shù)列和的最值問(wèn)題,意在考查學(xué)生對(duì)于數(shù)列公式方法的綜合應(yīng)用.4、B【解析】
化簡(jiǎn)得到,再計(jì)算模長(zhǎng)得到答案.【詳解】,故.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算,復(fù)數(shù)的模,意在考查學(xué)生的計(jì)算能力.5、A【解析】
分段求解函數(shù)零點(diǎn),數(shù)形結(jié)合,分類(lèi)討論即可求得結(jié)果.【詳解】作出和,的圖像如下所示:函數(shù)有三個(gè)零點(diǎn),等價(jià)于與有三個(gè)交點(diǎn),又因?yàn)?,且由圖可知,當(dāng)時(shí)與有兩個(gè)交點(diǎn),故只需當(dāng)時(shí),與有一個(gè)交點(diǎn)即可.若當(dāng)時(shí),時(shí),顯然??=??(??)與??=4|??|有一個(gè)交點(diǎn)??,故滿(mǎn)足題意;時(shí),顯然??=??(??)與??=4|??|沒(méi)有交點(diǎn),故不滿(mǎn)足題意;時(shí),顯然??=??(??)與??=4|??|也沒(méi)有交點(diǎn),故不滿(mǎn)足題意;時(shí),顯然與有一個(gè)交點(diǎn),故滿(mǎn)足題意.綜上所述,要滿(mǎn)足題意,只需.故選:A.【點(diǎn)睛】本題考查由函數(shù)零點(diǎn)的個(gè)數(shù)求參數(shù)范圍,屬中檔題.6、B【解析】
由平行求出參數(shù),再由數(shù)量積的坐標(biāo)運(yùn)算計(jì)算.【詳解】由,得,則,,,所以.故選:B.【點(diǎn)睛】本題考查向量平行的坐標(biāo)表示,考查數(shù)量積的坐標(biāo)運(yùn)算,掌握向量數(shù)量積的坐標(biāo)運(yùn)算是解題關(guān)鍵.7、D【解析】
根據(jù)線(xiàn)面平行和面面平行的性質(zhì),可判定A;由線(xiàn)面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解】選項(xiàng)A:若,,根據(jù)線(xiàn)面平行和面面平行的性質(zhì),有或,故A正確;選項(xiàng)B:若,,,由線(xiàn)面平行的判定定理,有,故B正確;選項(xiàng)C:若,,,故,所成的二面角為,則,故C正確;選項(xiàng)D,若,,有可能,故D不正確.故選:D【點(diǎn)睛】本題考查了空間中的平行垂直關(guān)系判斷,考查了學(xué)生邏輯推理,空間想象能力,屬于中檔題.8、A【解析】
利用間接法求解,首先對(duì)6門(mén)課程全排列,減去“樂(lè)”排在第一節(jié)的情況,再減去“射”和“御”兩門(mén)課程相鄰的情況,最后還需加上“樂(lè)”排在第一節(jié),且“射”和“御”兩門(mén)課程相鄰的情況;【詳解】解:根據(jù)題意,首先不做任何考慮直接全排列則有(種),當(dāng)“樂(lè)”排在第一節(jié)有(種),當(dāng)“射”和“御”兩門(mén)課程相鄰時(shí)有(種),當(dāng)“樂(lè)”排在第一節(jié),且“射”和“御”兩門(mén)課程相鄰時(shí)有(種),則滿(mǎn)足“樂(lè)”不排在第一節(jié),“射”和“御”兩門(mén)課程不相鄰的排法有(種),故選:.【點(diǎn)睛】本題考查排列、組合的應(yīng)用,注意“樂(lè)”的排列對(duì)“射”和“御”兩門(mén)課程相鄰的影響,屬于中檔題.9、D【解析】
由題意畫(huà)出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過(guò)求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設(shè)AB的中點(diǎn)為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設(shè)外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計(jì)算能力,屬于中檔題.10、A【解析】
求函數(shù)定義域得集合M,N后,再判斷.【詳解】由題意,,∴.故選A.【點(diǎn)睛】本題考查集合的運(yùn)算,解題關(guān)鍵是確定集合中的元素.確定集合的元素時(shí)要注意代表元形式,集合是函數(shù)的定義域,還是函數(shù)的值域,是不等式的解集還是曲線(xiàn)上的點(diǎn)集,都由代表元決定.11、D【解析】
設(shè),,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡(jiǎn)可得,即可求出離心率.【詳解】解:設(shè),,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【點(diǎn)睛】本題考查雙曲線(xiàn)的方程和性質(zhì),考查了斜率的計(jì)算,離心率的求法,屬于基礎(chǔ)題和易錯(cuò)題.12、D【解析】
根據(jù)折線(xiàn)圖依次判斷每個(gè)選項(xiàng)得到答案.【詳解】由繪制出的折線(xiàn)圖知:在A中,各月最高氣溫平均值與最低氣溫平均值為正相關(guān),故A正確;在B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;在C中,全年中各月最低氣溫平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5個(gè),故C正確;在D中,從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查了折線(xiàn)圖,意在考查學(xué)生的理解能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,所以.14、-2【解析】
先根據(jù)約束條件畫(huà)出可行域,再利用幾何意義求最值,表示直線(xiàn)在軸上的截距,只需求出可行域直線(xiàn)在軸上的截距最大最小值時(shí)所在的頂點(diǎn)即可.【詳解】由題意得:目標(biāo)函數(shù)在點(diǎn)B取得最大值為7,在點(diǎn)A處取得最小值為1,∴,,∴直線(xiàn)AB的方程是:,∴則,故答案為.【點(diǎn)睛】本題主要考查了簡(jiǎn)單的線(xiàn)性規(guī)劃,以及利用幾何意義求最值的方法,屬于基礎(chǔ)題.15、【解析】
先求導(dǎo)數(shù)可得切線(xiàn)斜率,利用基本不等式可得切點(diǎn)橫坐標(biāo),從而可得切線(xiàn)方程.【詳解】,,=1時(shí)有最小值1,此時(shí)M(1,﹣2),故切線(xiàn)方程為:,即.故答案為:.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的幾何意義,切點(diǎn)處的導(dǎo)數(shù)值等于切線(xiàn)的斜率是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).16、【解析】
根據(jù)弦的垂直平分線(xiàn)經(jīng)過(guò)圓心,結(jié)合圓心所在直線(xiàn)方程,即可求得圓心坐標(biāo).由兩點(diǎn)間距離公式,即可得半徑.【詳解】因?yàn)閳A經(jīng)過(guò)點(diǎn)則直線(xiàn)的斜率為所以與直線(xiàn)垂直的方程斜率為點(diǎn)的中點(diǎn)坐標(biāo)為所以由點(diǎn)斜式可得直線(xiàn)垂直平分線(xiàn)的方程為,化簡(jiǎn)可得而弦的垂直平分線(xiàn)經(jīng)過(guò)圓心,且圓心在直線(xiàn)上,設(shè)圓心所以圓心滿(mǎn)足解得所以圓心坐標(biāo)為則圓的半徑為故答案為:【點(diǎn)睛】本題考查了直線(xiàn)垂直時(shí)的斜率關(guān)系,直線(xiàn)與直線(xiàn)交點(diǎn)的求法,直線(xiàn)與圓的位置關(guān)系,圓的半徑的求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)【解析】
(1)由折疊過(guò)程知與平面垂直,得,再取中點(diǎn),可證與平面垂直,得,從而可得線(xiàn)面垂直,再得線(xiàn)線(xiàn)垂直;(2)由已知得為中點(diǎn),以為原點(diǎn),所在直線(xiàn)為軸,在平面內(nèi)過(guò)作的垂線(xiàn)為軸建立空間直角坐標(biāo)系,由已知求出線(xiàn)段長(zhǎng),得出各點(diǎn)坐標(biāo),用平面的法向量計(jì)算二面角的余弦.【詳解】(1)易知與平面垂直,∴,連接,取中點(diǎn),連接,由得,,∴平面,平面,∴,又,∴平面,∴;(2)由,知是中點(diǎn),令,則,由,,∴,解得,故.以為原點(diǎn),所在直線(xiàn)為軸,在平面內(nèi)過(guò)作的垂線(xiàn)為軸建立空間直角坐標(biāo)系,如圖,則,,,設(shè)平面的法向量為,則,取,則.又易知平面的一個(gè)法向量為,.∴二面角的余弦值為.【點(diǎn)睛】本題考查證明線(xiàn)線(xiàn)垂直,考查用空間向量法求二面角.證線(xiàn)線(xiàn)垂直,一般先證線(xiàn)面垂直,而證線(xiàn)面垂直又要證線(xiàn)線(xiàn)垂直,注意線(xiàn)線(xiàn)垂直、線(xiàn)面垂直及面面垂直的轉(zhuǎn)化.求空間角,常用方法就是建立空間直角坐標(biāo)系,用空間向量法求空間角.18、(1),;(2),證明見(jiàn)解析【解析】
(1)利用已知條件建立等量關(guān)系求出數(shù)列的通項(xiàng)公式.(2)利用裂項(xiàng)相消法求出數(shù)列的和,進(jìn)一步利用放縮法求出結(jié)論.【詳解】(1),,得是公比為的等比數(shù)列,,,當(dāng)時(shí),數(shù)列的前項(xiàng)積為,則,兩式相除得,得,又得,;(2),故.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):數(shù)列的通項(xiàng)公式的求法及應(yīng)用,數(shù)列的前項(xiàng)和的應(yīng)用,裂項(xiàng)相消法在數(shù)列求和中的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于中檔題.19、(1);(2)【解析】
(1)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互化公式即可;(2)將直線(xiàn)參數(shù)方程代入圓的普通方程,可得,,而根據(jù)直線(xiàn)參數(shù)方程的幾何意義,知,代入即可解決.【詳解】(1)直線(xiàn)的參數(shù)方程為(為參數(shù)),消去;得曲線(xiàn)的極坐標(biāo)方程為.由,,,可得,即曲線(xiàn)的直角坐標(biāo)方程為;(2)將直線(xiàn)的參數(shù)方程(為參數(shù))代入的方程,可得,,設(shè),是點(diǎn)對(duì)應(yīng)的參數(shù)值,,,則.【點(diǎn)睛】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,直線(xiàn)參數(shù)方程的幾何意義,是一道容易題.20、橫線(xiàn)處任填一個(gè)都可以,面積為.【解析】
無(wú)論選哪一個(gè),都先由正弦定理化邊為角后,由誘導(dǎo)公式,展開(kāi)后,可求得角,再由余弦定理求得,從而易求得三角形面積.【詳解】在橫線(xiàn)上填寫(xiě)“”.解:由正弦定理,得.由,得.由,得.所以.又(若,則這與矛盾),所以.又,得.由余弦定理及,得,即.將代入,解得.所以.在橫線(xiàn)上填寫(xiě)“”.解:由及正弦定理,得.又,所以有.因?yàn)椋?從而有.又,所以由余弦定理及,得即.將代入,解得.所以.在橫線(xiàn)上填寫(xiě)“”解:由正弦定理,得.由,得,所以由二倍角公式,得.由,得,所以.所以,即.由余弦定理及,得.即.將代入,解得.所以.【點(diǎn)睛】本題考查三角形面積公式,考查正弦定理、余弦定理,兩角和的正弦公式等,正弦定理進(jìn)行邊角轉(zhuǎn)換,求三角形面積時(shí),①若三角形中已知一個(gè)角(角的大小或該角的正、余弦值),結(jié)合題意求解這個(gè)角的兩邊或該角的兩邊之積,代入公式求面積;②若已知三角形的三邊,可先求其一個(gè)角的余弦值,再求其正弦值,代入公式求面積,總之,結(jié)合圖形恰當(dāng)選擇面積公式是解題的關(guān)鍵.21、(1),;(2)米.【解析】
(1)過(guò)點(diǎn)作于點(diǎn)再在中利用正弦定理求解,再根據(jù)求解,進(jìn)而求得.再根據(jù)確定的范圍即可.(2)根據(jù)(1)有,再設(shè),
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 輕奢電動(dòng)車(chē)輛贈(zèng)與及售后保障合同
- 熱銷(xiāo)木飾面產(chǎn)品區(qū)域總代理合同
- 餐飲廚房后廚員工培訓(xùn)與福利保障承包合同
- 電子產(chǎn)品進(jìn)出口銷(xiāo)售代理協(xié)議模板
- 車(chē)輛租賃與駕駛?cè)藛T責(zé)任險(xiǎn)合同范本
- 協(xié)議離婚中婚姻財(cái)產(chǎn)分割與遺產(chǎn)繼承合同
- 住宅小區(qū)車(chē)位使用權(quán)轉(zhuǎn)讓及維修基金繳納協(xié)議
- 長(zhǎng)租公寓退房檢查及押金返還協(xié)議
- 橋梁樁基聲屏障安裝工程
- 正向設(shè)計(jì)流程核心要點(diǎn)
- 大家的日語(yǔ)(電子版)
- “怎樣提高學(xué)生的計(jì)算能力”教研活動(dòng)方案
- 談戀愛(ài)被騙民事起訴狀范本
- 錘擊樁(砼預(yù)制方樁、預(yù)應(yīng)力砼管樁、鋼樁)工程旁站監(jiān)理記錄
- 老年患者術(shù)后譫妄課件
- 國(guó)開(kāi)2023年春《互換性與技術(shù)測(cè)量》形考任務(wù)一二三四參考答案
- GB/T 42532-2023濕地退化評(píng)估技術(shù)規(guī)范
- 會(huì)計(jì)知識(shí)大賽初賽題庫(kù)
- 鎖梁自動(dòng)成型機(jī)構(gòu)課程設(shè)計(jì)
- 紙箱箱型結(jié)構(gòu)培訓(xùn)課程
- 【超星爾雅學(xué)習(xí)通】大國(guó)崛起:中國(guó)對(duì)外貿(mào)易概論網(wǎng)課章節(jié)答案
評(píng)論
0/150
提交評(píng)論