2022年青島市重點中學數(shù)學九年級上冊期末復(fù)習檢測模擬試題含解析_第1頁
2022年青島市重點中學數(shù)學九年級上冊期末復(fù)習檢測模擬試題含解析_第2頁
2022年青島市重點中學數(shù)學九年級上冊期末復(fù)習檢測模擬試題含解析_第3頁
2022年青島市重點中學數(shù)學九年級上冊期末復(fù)習檢測模擬試題含解析_第4頁
2022年青島市重點中學數(shù)學九年級上冊期末復(fù)習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,已知拋物線的對稱軸過點且平行于y軸,若點在拋物線上,則下列4個結(jié)論:①;②;③;④.其中正確結(jié)論的個數(shù)是()A.1 B.2 C.3 D.42.如圖,在中,點C為弧AB的中點,若(為銳角),則()A. B. C. D.3.如圖,PA、PB、分別切⊙O于A、B兩點,∠P=40°,則∠C的度數(shù)為()A.40° B.140° C.70° D.80°4.的半徑為,弦,,,則、間的距離是:()A. B. C.或 D.以上都不對5.如圖,在中,,垂足為點,一直角三角板的直角頂點與點重合,這塊三角板饒點旋轉(zhuǎn),兩條直角邊始終與邊分別相交于,則在運動過程中,與的關(guān)系是()A.一定相似 B.一定全等 C.不一定相似 D.無法判斷6.已知x1,x2是一元二次方程x2-2x-1=0的兩根,則x1+x2-x1·x2的值是()A.1 B.3 C.-1 D.-37.一個布袋里裝有10個只有顏色不同的球,其中4個黃球,6個白球.從布袋里任意摸出1個球,則摸出的球是黃球的概率為()A. B. C. D.8.如圖,過x軸正半軸上的任意一點P,作y軸的平行線,分別與反比例函數(shù)和的圖象交于A、B兩點.若點C是y軸上任意一點,連接AC、BC,則△ABC的面積為()A.3 B.4 C.5 D.109.如圖,A,B,C,D為⊙O的四等分點,動點P從圓心O出發(fā),沿O﹣C﹣D﹣O路線作勻速運動,設(shè)運動時間為t(s).∠APB=y(tǒng)(°),則下列圖象中表示y與t之間函數(shù)關(guān)系最恰當?shù)氖牵ǎ〢. B.C. D.10.如圖,在△ABC中,E,G分別是AB,AC上的點,∠AEG=∠C,∠BAC的平分線AD交EG于點F,若,則()A. B. C. D.11.二次函數(shù)y=kx2+2x+1的部分圖象如圖所示,則k的取值范圍是()A.k≤1 B.k≥1 C.k<1 D.0<k<112.如圖,在Rt△ABC中,∠C=90°,∠A=30°,E為AB上一點且AE∶EB=4∶1,EF⊥AC于點F,連接FB,則tan∠CFB的值等于()A. B. C. D.5二、填空題(每題4分,共24分)13.已知關(guān)于的方程有兩個不相等的實數(shù)根,則的取值范圍是________.14.如圖,在△ABC中,D為AC邊上一點,且∠DBA=∠C,若AD=2cm,AB=4cm,那么CD的長等于________cm.15.如圖,把△ABC繞點C按順時針方向旋轉(zhuǎn)35°,得到△A’B’C,A’B’交AC于點D,若∠A’DC=90°,則∠A=°.16.已知兩個相似三角形的相似比為2︰5,其中較小的三角形面積是,那么另一個三角形的面積為.17.圓錐的母線長為5cm,高為4cm,則該圓錐的全面積為_______cm2.18.如圖,一次函數(shù)的圖象交x軸于點B,交y軸于點A,交反比例函數(shù)的圖象于點,若,且的面積為2,則k的值為________三、解答題(共78分)19.(8分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:(1)若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結(jié)果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.20.(8分)垃圾分類是必須要落實的國家政策,環(huán)衛(wèi)部門要求垃圾要按可回收物,有害垃圾,餐廚垃圾,其它垃圾四類分別裝袋,投放.甲投放了一袋垃圾,乙投放了兩袋垃圾(兩袋垃圾不同類).(1)直接寫出甲投放的垃圾恰好是類垃圾的概率;(2)用樹狀圖求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.21.(8分)如圖,△ABC是一塊銳角三角形的材料,邊BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB、AC上,這個正方形零件的邊長是多少mm.22.(10分)如圖,在平面直角坐標系中,直線與x軸、y軸分別交于A、B兩點,點P從點A出發(fā),沿折線AB﹣BO向終點O運動,在AB上以每秒5個單位長度的速度運動,在BO上以每秒3個單位長度的速度運動;點Q從點O出發(fā),沿OA方向以每秒個單位長度的速度運動.P,Q兩點同時出發(fā),當點P停止時,點Q也隨之停止.過點P作PE⊥AO于點E,以PE,EQ為鄰邊作矩形PEQF,設(shè)矩形PEQF與△ABO重疊部分圖形的面積為S,點P運動的時間為t秒.(1)連結(jié)PQ,當PQ與△ABO的一邊平行時,求t的值;(2)求S與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍.23.(10分)如圖,在中,過半徑OD中點C作AB⊥OD交O于A,B兩點,且.(1)求OD的長;(2)計算陰影部分的面積.24.(10分)如圖,AB是⊙O的直徑,點C是⊙O上一點(點C不與A,B重合),連接CA,CB.∠ACB的平分線CD與⊙O交于點D.(1)求∠ACD的度數(shù);(2)探究CA,CB,CD三者之間的等量關(guān)系,并證明;(3)E為⊙O外一點,滿足ED=BD,AB=5,AE=3,若點P為AE中點,求PO的長.25.(12分)甲乙兩人參加一個幸運挑戰(zhàn)活動,活動規(guī)則是:一個布袋里裝有3個只有顏色不同的球,其中2個紅球,1個白球.甲從布袋中摸出一個球,記下顏色后放回,攪勻,乙再摸出一個球,若顏色相同,則挑戰(zhàn)成功.(1)用列表法或樹狀圖法,表示所有可能出現(xiàn)的結(jié)果.(2)求兩人挑戰(zhàn)成功的概率.26.如圖,為正方形對角線上一點,以為圓心,長為半徑的與相切于點.(1)求證:與相切.(2)若正方形的邊長為1,求半徑的長.

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)二次函數(shù)的圖象與性質(zhì)對各個結(jié)論進行判斷,即可求出答案.【詳解】解:∵拋物線的對稱軸過點,∴拋物線的對稱軸為,即,可得由圖象可知,,則,∴,①正確;∵圖象與x軸有兩個交點,∴,即,②錯誤;∵拋物線的頂點在x軸的下方,∴當x=1時,,③錯誤;∵點在拋物線上,即是拋物線與x軸的交點,由對稱軸可得,拋物線與x軸的另一個交點為,故當x=?2時,,④正確;綜上所述:①④正確,故選:B.【點睛】本題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系、拋物線與x軸的交點,解題的關(guān)鍵是逐一分析每條結(jié)論是否正確.解決該題型題目時,熟練掌握二次函數(shù)的圖象與性質(zhì)是關(guān)鍵.2、B【分析】連接BD,如圖,由于點C為弧AB的中點,根據(jù)圓周角定理得到∠BDC=∠ADC=α,然后根據(jù)圓內(nèi)接四邊形的對角互補可用α表示出∠APB.【詳解】解:連接BD,如圖,∵點C為弧AB的中點,∴弧AC=弧BC,∴∠BDC=∠ADC=α,∴∠ADB=2α,∵∠APB+∠ADB=180°,∴∠APB=180°-2α.故選:B.【點睛】本題考查了弧、弦、圓心角的關(guān)系,以及圓內(nèi)接四邊形的性質(zhì),熟練掌握圓的性質(zhì)定理是解答本題的關(guān)鍵.3、C【分析】連接OA,OB根據(jù)切線的性質(zhì)定理,切線垂直于過切點的半徑,即可求得∠OAP,∠OBP的度數(shù),根據(jù)四邊形的內(nèi)角和定理即可求的∠AOB的度數(shù),然后根據(jù)圓周角定理即可求解.【詳解】∵PA是圓的切線,∴同理根據(jù)四邊形內(nèi)角和定理可得:∴故選:C.【點睛】考查切線的性質(zhì)以及圓周角定理,連接圓心與切點是解題的關(guān)鍵.4、C【分析】先根據(jù)勾股定理求出OE=6,OF=8,再分AB、CD在點O的同側(cè)時,AB、CD在點O的兩側(cè)時兩種情況分別計算求出EF即可.【詳解】如圖,過點O作OF⊥CD于F,交AB于點E,∵,∴OE⊥AB,在Rt△AOE中,OA=10,AE=AB=8,∴OE=6,在Rt△COF中,OC=10,CF=CD=6,∴OF=8,當AB、CD在點O的同側(cè)時,、間的距離EF=OF-OE=8-6=2;當AB、CD在點O的兩側(cè)時,AB、CD間的距離EF=OE+OF=6+8=14,故選:C.【點睛】此題考查了圓的垂徑定理,勾股定理,在圓中通常利用垂徑定理和勾股定理求半徑、弦的一半、弦心距三者中的一個量.5、A【分析】根據(jù)已知條件可得出,,再結(jié)合三角形的內(nèi)角和定理可得出,從而可判定兩三角形一定相似.【詳解】解:由已知條件可得,,∵,∴,∵,∴,繼而可得出,∴.故選:A.【點睛】本題考查的知識點是相似三角形的判定定理,靈活利用三角形內(nèi)角和定理以及余角定理是解此題的關(guān)鍵.6、B【分析】直接根據(jù)根與系數(shù)的關(guān)系求解.【詳解】由題意知:,,∴原式=2-(-1)=3故選B.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程的兩根為x1,x2,則,.7、B【分析】用黃球的個數(shù)除以球的總個數(shù)即為所求的概率.【詳解】因為一共有10個球,其中黃球有4個,

所以從布袋里任意摸出1個球,摸到白球的概率為.故選:B.【點睛】本題考查了概率公式,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.8、C【分析】設(shè)P(a,0),由直線AB∥y軸,則A,B兩點的橫坐標都為a,而A,B分別在反比例函數(shù)圖象上,可得到A點坐標為(a,-),B點坐標為(a,),從而求出AB的長,然后根據(jù)三角形的面積公式計算即可.【詳解】設(shè)P(a,0),a>0,∴A和B的橫坐標都為a,OP=a,將x=a代入反比例函數(shù)y=﹣中得:y=﹣,∴A(a,﹣);將x=a代入反比例函數(shù)y=中得:y=,∴B(a,),∴AB=AP+BP=+=,則S△ABC=AB?OP=××a=1.故選C.【點睛】此題考查了反比例函數(shù),以及坐標與圖形性質(zhì),其中設(shè)出P的坐標,表示出AB的長是解本題的關(guān)鍵.9、C【解析】根據(jù)題意,分P在OC、CD、DO之間3個階段,分別分析變化的趨勢,又由點P作勻速運動,故圖像都是線段,分析選項可得答案.【詳解】根據(jù)題意,分3個階段;①P在OC之間,∠APB逐漸減小,到C點時,∠APB為45°,所以圖像是下降的線段,②P在弧CD之間,∠APB保持45°,大小不變,所以圖像是水平的線段,③P在DO之間,∠APB逐漸增大,到O點時,∠APB為90°,所以圖像是上升的線段,分析可得:C符合3個階段的描述;故選C.【點睛】本題主要考查了函數(shù)圖象與幾何變換,解決此類問題,注意將過程分成幾個階段,依次分析各個階段得變化情況,進而綜合可得整體得變化情況.10、C【分析】根據(jù)兩組對應(yīng)角相等可判斷△AEG∽△ACB,△AEF∽△ACD,再得出線段間的比例關(guān)系進行計算即可得出結(jié)果.【詳解】解:(1)∵∠AEG=∠C,∠EAG=∠BAC,

∴△AEG∽△ACB.

∴.

∵∠EAF=∠CAD,∠AEF=∠C,

∴△AEF∽△ACD.

∴又,∴.∴故選C.【點睛】本題考查了相似三角形的判定,解答本題,要找到兩組對應(yīng)角相等,再利用相似的性質(zhì)求線段的比值.11、D【分析】由二次函數(shù)y=kx2+2x+1的部分圖象可知開口朝上以及頂點在x軸下方進行分析.【詳解】解:由圖象可知開口朝上即有0<k,又因為頂點在x軸下方,所以頂點縱坐標從而解得k<1,所以k的取值范圍是0<k<1.故選D.【點睛】本題考查二次函數(shù)圖像性質(zhì),根據(jù)開口朝上以及頂點在x軸下方分別代入進行分析.12、C【解析】根據(jù)題意:在Rt△ABC中,∠C=90°,∠A=30°,∵EF⊥AC,∴EF∥BC,∴=∵AE:EB=4:1,∴=5,∴=,設(shè)AB=2x,則BC=x,AC=∴在Rt△CFB中有CF=x,BC=x.則tan∠CFB==故選C.二、填空題(每題4分,共24分)13、【詳解】根據(jù)題意得:△=(﹣2)2-4×m=4-4m>0,解得m<.故答案為m<.【點睛】本題考查一元二次方程ax2+bx+c=0(a≠0)根的判別式:(1)當△=b2﹣4ac>0時,方程有兩個不相等的實數(shù)根;(2)當△=b2﹣4ac=0時,方程有有兩個相等的實數(shù)根;(3)當△=b2﹣4ac<0時,方程沒有實數(shù)根.14、1【解析】由條件可證得△ABC∽△ADB,可得到=,從而可求得AC的長,最后計算CD的長.【詳解】∵∠DBA=∠C,∠A是公共角,∴△ABC∽△ADB,∴=,即=,解得:AC=8,∴CD=8﹣2=1.故答案為:1.【點睛】本題考查了相似三角形的判定和性質(zhì),掌握利用兩組角對應(yīng)相等可判定兩個三角形相似是解題的關(guān)鍵.15、55.【詳解】試題分析:∵把△ABC繞點C按順時針方向旋轉(zhuǎn)35°,得到△A’B’C∴∠ACA’=35°,∠A=∠A’,.∵∠A’DC=90°,∴∠A’=55°.∴∠A=55°.考點:1.旋轉(zhuǎn)的性質(zhì);2.直角三角形兩銳角的關(guān)系.16、25【解析】試題解析:∵兩個相似三角形的相似比為2:5,∴面積的比是4:25,∵小三角形的面積為4,∴大三角形的面積為25.故答案為25.點睛:相似三角形的面積比等于相似比的平方.17、14π【分析】利用圓錐的母線長和圓錐的高求得圓錐的底面半徑,表面積=底面積+側(cè)面積=π×底面半徑1+底面周長×母線長÷1.【詳解】解:∵圓錐母線長為5cm,圓錐的高為4cm,∴底面圓的半徑為3,則底面周長=6π,∴側(cè)面面積=×6π×5=15π;∴底面積為=9π,∴全面積為:15π+9π=14π.故答案為14π.【點睛】本題利用了圓的周長公式和扇形面積公式求解.18、【解析】過點C作CD⊥x軸于點D,根據(jù)AAS可證明△AOB≌△CDB,從而證得S△AOC=S△OCD,最后再利用k的幾何意義即可得到答案.【詳解】解:過點C作CD⊥x軸于點D,如圖所示,∵在△AOB與△CDB中,,∴△AOB≌△CDB(AAS),∴S△AOB=S△CDB,∴S△AOC=S△OCD,∵S△AOC=2,∴S△OCD=2,∴,∴k=±4,又∵反比例函數(shù)圖象在第一象限,k>0,∴k=4.【點睛】本題考查全等三角形的判定與性質(zhì),反比例函數(shù)中比例系數(shù)k的幾何意義,熟練掌握判定定理及k的幾何意義是解題的關(guān)鍵.三、解答題(共78分)19、(1);(2).【解析】(1)既是中心對稱圖形又是軸對稱圖形只有圓一個圖形,然后根據(jù)概率的意義解答即可;(2)畫出樹狀圖,然后根據(jù)概率公式列式計算即可得解.【詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對稱圖形又是軸對稱圖形,∴抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)根據(jù)題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對稱圖形).【點睛】本題考查了列表法和樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1);

(2)乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.【分析】(1)甲投放的垃圾可能出現(xiàn)的情況為4種,以此得出甲投放的垃圾恰好是類垃圾的概率;(2)根據(jù)題意作出樹狀圖,依據(jù)樹狀圖找出所有符合的情況,求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.【詳解】(1)甲投放的垃圾共有A、B、C、D四種可能,所以甲投放的垃圾恰好是類垃圾的概率為;

(2)∴乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.【點睛】本題考查了概率事件以及樹狀圖,掌握概率的公式以及樹狀圖的作法是解題的關(guān)鍵.21、48mm【分析】設(shè)正方形的邊長為x,表示出AI的長度,然后根據(jù)相似三角形對應(yīng)高的比等于相似比列出比例式,然后進行計算即可得解.【詳解】設(shè)正方形的邊長為xmm,則AI=AD﹣x=80﹣x,∵EFHG是正方形,∴EF∥GH,∴△AEF∽△ABC,∴,即,解得x=48mm,∴這個正方形零件的邊長是48mm.【點睛】本題主要考查了相似三角形判定與性質(zhì)的綜合運用,熟練掌握相關(guān)概念是解題關(guān)鍵.22、(1)當與的一邊平行時,或;(2)【分析】(1)先根據(jù)一次函數(shù)確定點、的坐標,再由、,可得、,由此構(gòu)建方程即可解決問題;(2)根據(jù)點在線段上、點在線段上的位置不同、自變量的范圍不同,進行分類討論,得出與的分段函數(shù).【詳解】解:(1)∵在中,令,則;令,則∴,∴,①當時,,則∴∴②當時,,則∴∴∴綜上所述,當與的一邊平行時,或.(2)①當0≤t≤時,重疊部分是矩形PEQF,如圖:∴∴∴∴,,∴;②當<t≤2時,如圖,重疊部分是四邊形PEQM,∴,,,,易得∴,∴;③當2<t≤3時,重疊部分是五邊形MNPOQ,如圖:∴∴,∴,∴,,,∴;④當3<t<4時,重疊部分是矩形POQF,如圖:∵,,∴,∴綜上所述,.【點睛】此題主要考查了相似三角形的判定與性質(zhì)以及矩形和梯形的面積求法等知識,利用分類討論的思想方法是解題的關(guān)鍵.23、(1);(2)【分析】(1)根據(jù)垂徑定理求出BC=,在Rt△OCB中,由勾股定理列方程求解;(2)根據(jù)扇形面積公式和三角形面積公式即可求得陰影部分的面積.【詳解】解:如圖,連接OB,∵AB⊥OD,∴AC=BC=,∵C為OD中點,∴OC=,設(shè)OD=x,在Rt△OCB中,由勾股定理得,OC2+BC2=OB2,∴()2+()2=x2,解得x=2∴OD=2.(2)S△OCB=∵OC=1,OB=2,∴∠BOC=60°,∴S扇BOD=,∴陰影部分的面積為:【點睛】本題考查利用垂徑定理求半徑長及扇形面積公式,垂徑定理是解決圓中線段長的常用重要定理.24、(1)∠ACD=45°;(2)BC+AC=CD,見解析;(3)OP=.【分析】(1)由圓周角的定義可求∠ACB=90°,再由角平分線的定義得到∠ACD=45°;(2)連接CO延長與圓O交于點G,連接DG、BG,延長DG、CB交于點F;先證明△BGF是等腰直角三角形,得到BG=BF,AG=BF,再證明△CDF是等腰三角三角形,得到CF=CD,即可求得BC+AC=CD;(3)過點A作AM⊥ED,過點B作BN⊥ED交ED延長線與點N,連接BE;先證明Rt△AMD≌Rt△DNB(AAS),再證明△AED是等腰三角形,分別求得EN=,BN=,在Rt△EBN中,BE=,OP=BN=.【詳解】解:(1)∵AB是直徑,點C在圓上,∴∠ACB=90°,∵∠ACB的平分線CD與⊙O交于點D,∴∠ACD=45°;(2)BC+AC=CD,連接CO延長與圓O交于點G,連接DG、BG,延長DG、CB交于點F;∴∠CDG=∠CBG=90°,∵∠ACB=90°,∴AC∥BG,∴∠CGB=∠ACG,∴∠CGB=45°+∠DCG,∵∠CBF=90°+∠DCG,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論