2022年山東省威海市文登區(qū)數(shù)學(xué)九年級(jí)上冊(cè)期末達(dá)標(biāo)檢測(cè)試題含解析_第1頁(yè)
2022年山東省威海市文登區(qū)數(shù)學(xué)九年級(jí)上冊(cè)期末達(dá)標(biāo)檢測(cè)試題含解析_第2頁(yè)
2022年山東省威海市文登區(qū)數(shù)學(xué)九年級(jí)上冊(cè)期末達(dá)標(biāo)檢測(cè)試題含解析_第3頁(yè)
2022年山東省威海市文登區(qū)數(shù)學(xué)九年級(jí)上冊(cè)期末達(dá)標(biāo)檢測(cè)試題含解析_第4頁(yè)
2022年山東省威海市文登區(qū)數(shù)學(xué)九年級(jí)上冊(cè)期末達(dá)標(biāo)檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(每小題3分,共30分)1.如圖,△ABC的頂點(diǎn)都在方格紙的格點(diǎn)上,那么的值為()A. B. C. D.2.在平面直角坐標(biāo)系中,△ABC與△A1B1C1位似,位似中心是原點(diǎn)O,若△ABC與△A1B1C1的相似比為1:2,且點(diǎn)A的坐標(biāo)是(1,3),則它的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)是()A.(-3,-1) B.(-2,-6) C.(2,6)或(-2,-6) D.(-1,-3)3.如圖,在平面直角坐標(biāo)系中,正方形的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)在第二象限,且反比例函數(shù)的圖像經(jīng)過(guò)點(diǎn),則的值是()A.-9 B.-8 C.-7 D.-64.由于受豬瘟的影響,今年9月份豬肉的價(jià)格兩次大幅上漲,瘦肉價(jià)格由原來(lái)每千克元,連續(xù)兩次上漲后,售價(jià)上升到每千克元,則下列方程中正確的是()A. B.C. D.5.若,設(shè),,,則、、的大小順序?yàn)椋ǎ〢. B. C. D.6.如圖,點(diǎn)O是五邊形ABCDE和五邊形A1B1C1D1E1的位似中心,若OA:OA1=1:3,則五邊形ABCDE和五邊形A1B1C1D1E1的面積比是()A.1:2 B.1:3 C.1:4 D.1:97.已知2是關(guān)于x的方程的一個(gè)根,則這個(gè)方程的另一個(gè)根是()A.3 B.-3 C.-5 D.68.?dāng)S一枚質(zhì)地均勻硬幣,前3次都是正面朝上,擲第4次時(shí)正面朝上的概率是()A.0 B. C. D.19.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正確結(jié)論的序號(hào)是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤10.如圖,某地修建高速公路,要從A地向B地修一條隧道(點(diǎn)A、B在同一水平面上).為了測(cè)量A、B兩地之間的距離,一架直升飛機(jī)從A地出發(fā),垂直上升800米到達(dá)C處,在C處觀察B地的俯角為α,則A、B兩地之間的距離為()A.800sinα米 B.800tanα米 C.米 D.米二、填空題(每小題3分,共24分)11.如圖,在△ABC中,D,E分別是AC,BC邊上的中點(diǎn),則三角形CDE的面積與四邊形ABED的面積比等于____________12.函數(shù)y=中的自變量的取值范圍是____________.13.如圖,坐標(biāo)系中正方形網(wǎng)格的單位長(zhǎng)度為1,拋物線y1=-x2+3向下平移2個(gè)單位后得拋物線y2,則陰影部分的面積S=_____________.14.三角形的三條邊分別為5,5,6,則該三角形的內(nèi)切圓半徑為_(kāi)_________15.在Rt△ABC中,∠C=90°,AC=6,BC=8(如圖),點(diǎn)D是邊AB上一點(diǎn),把△ABC繞著點(diǎn)D旋轉(zhuǎn)90°得到,邊與邊AB相交于點(diǎn)E,如果AD=BE,那么AD長(zhǎng)為_(kāi)___.16.如圖,已知在△ABC中,點(diǎn)D、E、F分別是邊AB、AC、BC上的點(diǎn),DE//BC,EF//AB,且AD:DB=3:5,那么CF:CB等于__________.17.已知x1,x2是關(guān)于x的方程x2﹣kx+3=0的兩根,且滿足x1+x2﹣x1x2=4,則k的值為_(kāi)____.18.如圖,量角器外沿上有A、B兩點(diǎn),它們的讀數(shù)分別是75°、45°,則∠1的度數(shù)為_(kāi)____.三、解答題(共66分)19.(10分)如圖,AD、A′D′分別是△ABC和△A′B′C′的中線,且.判斷△ABC和△A′B′C′是否相似,并說(shuō)明理由.20.(6分)如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,3),B(-4,1),C(-1,2).(1)畫(huà)出以點(diǎn)O為旋轉(zhuǎn)中心,將△ABC順時(shí)針旋轉(zhuǎn)90°得到△A'B'C'(2)求點(diǎn)C在旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路徑的長(zhǎng).21.(6分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A、B兩點(diǎn).(1)利用圖中的條件,求反比例函數(shù)和一次函數(shù)的解析式.(2)求△AOB的面積.(3)根據(jù)圖象直接寫(xiě)出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.22.(8分)如圖,在平面直角坐標(biāo)系xOy中,直線和拋物線W交于A,B兩點(diǎn),其中點(diǎn)A是拋物線W的頂點(diǎn).當(dāng)點(diǎn)A在直線上運(yùn)動(dòng)時(shí),拋物線W隨點(diǎn)A作平移運(yùn)動(dòng).在拋物線平移的過(guò)程中,線段AB的長(zhǎng)度保持不變.應(yīng)用上面的結(jié)論,解決下列問(wèn)題:在平面直角坐標(biāo)系xOy中,已知直線.點(diǎn)A是直線上的一個(gè)動(dòng)點(diǎn),且點(diǎn)A的橫坐標(biāo)為.以A為頂點(diǎn)的拋物線與直線的另一個(gè)交點(diǎn)為點(diǎn)B.(1)當(dāng)時(shí),求拋物線的解析式和AB的長(zhǎng);(2)當(dāng)點(diǎn)B到直線OA的距離達(dá)到最大時(shí),直接寫(xiě)出此時(shí)點(diǎn)A的坐標(biāo);(3)過(guò)點(diǎn)A作垂直于軸的直線交直線于點(diǎn)C.以C為頂點(diǎn)的拋物線與直線的另一個(gè)交點(diǎn)為點(diǎn)D.①當(dāng)AC⊥BD時(shí),求的值;②若以A,B,C,D為頂點(diǎn)構(gòu)成的圖形是凸四邊形(各個(gè)內(nèi)角度數(shù)都小于180°)時(shí),直接寫(xiě)出滿足條件的的取值范圍.23.(8分)定義:連結(jié)菱形的一邊中點(diǎn)與對(duì)邊的兩端點(diǎn)的線段把它分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,那么稱(chēng)這樣的菱形為自相似菱形.(1)判斷下列命題是真命題,還是假命題?①正方形是自相似菱形;②有一個(gè)內(nèi)角為60°的菱形是自相似菱形.③如圖1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E為BC中點(diǎn),則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED.(2)如圖2,菱形ABCD是自相似菱形,∠ABC是銳角,邊長(zhǎng)為4,E為BC中點(diǎn).①求AE,DE的長(zhǎng);②AC,BD交于點(diǎn)O,求tan∠DBC的值.24.(8分)如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(1,3)、B(4,2)、C(2,1),以原點(diǎn)為位似中心,在原點(diǎn)的另一側(cè)畫(huà)出△A1B1C1,使=,并寫(xiě)出△A1B1C1各頂點(diǎn)的坐標(biāo).25.(10分)解不等式組:26.(10分)已知二次函數(shù)y=ax2+bx+3的圖象經(jīng)過(guò)點(diǎn)(-3,0),(2,-5).(1)試確定此二次函數(shù)的解析式;(2)請(qǐng)你判斷點(diǎn)P(-2,3)是否在這個(gè)二次函數(shù)的圖象上?

參考答案一、選擇題(每小題3分,共30分)1、D【分析】把∠A置于直角三角形中,進(jìn)而求得對(duì)邊與斜邊之比即可.【詳解】解:如圖所示,在Rt△ACD中,AD=4,CD=3,∴AC===5∴==.故選D.【點(diǎn)睛】本題考查了銳角三角函數(shù)的定義;合理構(gòu)造直角三角形是解題關(guān)鍵.2、C【解析】根據(jù)如果位似變換是以原點(diǎn)為位似中心,相似比為k,那么位似圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于k或,即可求出答案.【詳解】由位似變換中對(duì)應(yīng)點(diǎn)坐標(biāo)的變化規(guī)律得:點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)是或,即點(diǎn)的坐標(biāo)是或故選:C.【點(diǎn)睛】本題考查了位似變換中對(duì)應(yīng)點(diǎn)坐標(biāo)的變化規(guī)律,理解位似的概念,并熟記變化規(guī)律是解題關(guān)鍵.3、B【分析】作AD⊥x軸于D,CE⊥x軸于E,先通過(guò)證得△AOD≌△OCE得出AD=OE,OD=CE,設(shè)A(x,),則C(,-x),根據(jù)正方形的性質(zhì)求得對(duì)角線解得F的坐標(biāo),即可得出,解方程組求得k的值.【詳解】解:如圖,作軸于,軸于連接AC,BO,∵,∴∵,∴.在和中,∴∴.設(shè),則.∵和互相垂直平分,點(diǎn)的坐標(biāo)為,∴交點(diǎn)的坐標(biāo)為,∴,解得,∴,故選.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,待定系數(shù)法求解析式,正方形的性質(zhì),全等三角形的判定和性質(zhì),熟練掌握正方形的性質(zhì)是解題的關(guān)鍵.4、A【分析】增長(zhǎng)率問(wèn)題,一般用增長(zhǎng)后的量=增長(zhǎng)前的量×(1+增長(zhǎng)率),先表示出第一次提價(jià)后商品的售價(jià),再根據(jù)題意表示第二次提價(jià)后的售價(jià),然后根據(jù)已知條件得到關(guān)于a%的方程.【詳解】解:當(dāng)豬肉第一次提價(jià)時(shí),其售價(jià)為;當(dāng)豬肉第二次提價(jià)后,其售價(jià)為故選:.【點(diǎn)睛】本題考查了求平均變化率的方法.若設(shè)變化前的量為a,變化后的量為b,平均變化率為x,則經(jīng)過(guò)兩次變化后的數(shù)量關(guān)系為a(1±x)2=b.5、B【分析】根據(jù),設(shè)x=1a,y=7a,z=5a,進(jìn)而代入A,B,C分別求出即可.【詳解】解:∵,設(shè)x=1a,y=7a,z=5a,

∴=,

==1,

==1.

∴A<B<C.

故選:B.【點(diǎn)睛】本題考查了比例的性質(zhì),根據(jù)比例式用同一個(gè)未知數(shù)得出x,y,z的值進(jìn)而求出是解題的關(guān)鍵.6、D【分析】由點(diǎn)O是五邊形ABCDE和五邊形A1B1C1D1E1的位似中心,OA:OA1=1:3,可得位似比為1:3,根據(jù)相似圖形的面積比等于相似比的平方,即可求得答案.【詳解】∵點(diǎn)O是五邊形ABCDE和五邊形A1B1C1D1E1的位似中心,OA:OA1=1:3,∴五邊形ABCDE和五邊形A1B1C1D1E1的位似比為1:3,∴五邊形ABCDE和五邊形A1B1C1D1E1的面積比是1:1.故選:D.【點(diǎn)睛】此題考查了位似圖形的性質(zhì).此題比較簡(jiǎn)單,注意相似圖形的周長(zhǎng)的比等于相似比,相似圖形的面積比等于相似比的平方.7、A【解析】由根與系數(shù)的關(guān)系,即2加另一個(gè)根等于5,計(jì)算即可求解.【詳解】由根與系數(shù)的關(guān)系,設(shè)另一個(gè)根為x,則2+x=5,即x=1.故選:A.【點(diǎn)睛】本題考查了根與系數(shù)的關(guān)系,用到的知識(shí)點(diǎn):如果x1,x2是方程x2+px+q=0的兩根,那么x1+x2=-p.8、B【分析】利用概率的意義直接得出答案.【詳解】連續(xù)拋擲一枚質(zhì)地均勻的硬幣4次,前3次的結(jié)果都是正面朝上,

他第4次拋擲這枚硬幣,正面朝上的概率為:.故選:B.【點(diǎn)睛】本題主要考查了概率的意義,正確把握概率的定義是解題關(guān)鍵.9、C【分析】根據(jù)二次函數(shù)的性質(zhì)逐項(xiàng)分析可得解.【詳解】解:由函數(shù)圖象可得各系數(shù)的關(guān)系:a<0,b<0,c>0,則①當(dāng)x=1時(shí),y=a+b+c<0,正確;②當(dāng)x=-1時(shí),y=a-b+c>1,正確;③abc>0,正確;④對(duì)稱(chēng)軸x=-1,則x=-2和x=0時(shí)取值相同,則4a-2b+c=1>0,錯(cuò)誤;⑤對(duì)稱(chēng)軸x=-=-1,b=2a,又x=-1時(shí),y=a-b+c>1,代入b=2a,則c-a>1,正確.故所有正確結(jié)論的序號(hào)是①②③⑤.故選C10、D【解析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根據(jù)tanα=,即可解決問(wèn)題.【詳解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故選D.【點(diǎn)睛】本題考查解直角三角形的應(yīng)用﹣仰角俯角問(wèn)題,解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.二、填空題(每小題3分,共24分)11、1:3【分析】根據(jù)中位線的定義可得:DE為△ABC的中位線,再根據(jù)中位線的性質(zhì)可得DE∥AB,且,從而證出△CDE∽△CAB,根據(jù)相似三角形的性質(zhì)即可求出,從而求出三角形CDE的面積與四邊形ABED的面積比.【詳解】解:∵D,E分別是AC,BC邊上的中點(diǎn),∴DE為△ABC的中位線∴DE∥AB,且∴△CDE∽△CAB∴∴故答案為:1:3.【點(diǎn)睛】此題考查的是中位線的性質(zhì)和相似三角形的判定及性質(zhì),掌握中位線的性質(zhì)、用平行證相似和相似三角形的面積比等于相似比的平方是解決此題的關(guān)鍵.12、x≠1【分析】根據(jù)分母不等于0列式計(jì)算即可得解.【詳解】根據(jù)題意得,x-1≠0,解得:x≠1.故答案為x≠1.13、1【解析】根據(jù)已知得出陰影部分即為平行四邊形的面積.【詳解】解:根據(jù)題意知,圖中陰影部分的面積即為平行四邊形的面積:2×2=1.

故答案是:1.【點(diǎn)睛】本題考查了二次函數(shù)圖象與幾何變換.解題關(guān)鍵是把陰影部分的面積整理為規(guī)則圖形的面積.14、1.5【分析】由等腰三角形的性質(zhì)和勾股定理,求出CE的長(zhǎng)度,然后利用面積相等列出等式,即可求出內(nèi)切圓的半徑.【詳解】解:如圖,點(diǎn)O為△ABC的內(nèi)心,設(shè)OD=OE=OF=r,∵AC=BC=5,CE平分∠ACB,∴CE⊥AB,AE=BE=,在Rt△ACE中,由勾股定理,得,由三角形的面積相等,則,∴,∴,∴;故答案為:1.5;【點(diǎn)睛】本題考查的是三角形的內(nèi)切圓與內(nèi)心,三線合一定理,勾股定理,掌握三角形的面積公式進(jìn)行計(jì)算是解題的關(guān)鍵.15、.【解析】在Rt△ABC中,

由旋轉(zhuǎn)的性質(zhì),設(shè)AD=A′D=BE=x,則DE=2x-10,

∵△ABC繞AB邊上的點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到△A′B′C′,

∴∠A′=∠A,∠A′DE=∠C=90°,

∴∽△BCA,∴,∵=10-x,∴,∴x=,故答案為.16、5:8【解析】試題解析:∴AE:EC=AD:DB=3:5,∴CE:CA=5:8,∴CF:CB=CE:CA=5:8.故答案為5:8.17、2【分析】根據(jù)兩根關(guān)系列出等式,再代入第二個(gè)代數(shù)式計(jì)算即可.【詳解】∵x1、x2是方程x2﹣kx+1=0的兩個(gè)根,∴x1+x2=k,x1x2=1.∵x1+x2﹣x1x2=k﹣1=4,∴k=2.故答案為:2.【點(diǎn)睛】本題考查一元二次方程的兩根關(guān)系,關(guān)鍵在于熟練掌握基礎(chǔ)知識(shí),代入計(jì)算.18、15°【分析】根據(jù)圓周角和圓心角的關(guān)系解答即可.【詳解】解:由圖可知,∠AOB=75°﹣45°=30°,根據(jù)同弧所對(duì)的圓周角等于它所對(duì)圓心角的一半可知,∠1=∠AOB=×30°=15°.故答案為15°【點(diǎn)睛】本題考查了圓周角定理,熟練掌握?qǐng)A周角定理是解題的關(guān)鍵.三、解答題(共66分)19、△ABC∽△A'B'C',理由見(jiàn)解析【分析】由題意知,根據(jù)相似三角形的判定定理:三邊對(duì)應(yīng)成比例的兩個(gè)三角形相似,可證得△ABD∽△A'B'D',進(jìn)而可得∠B=∠B',再根據(jù)兩邊對(duì)應(yīng)成比例及其夾角相等的兩個(gè)三角形相似,即可得△ABC∽△A'B'C'.【詳解】△ABC∽△A'B'C',理由:∵∴△ABD∽△A'B'D',∴∠B=∠B',∵AD、A'D'分別是△ABC和△A'B'C'的中線∴,,∴,在△ABC和△A'B'C'中∵,且∠B=∠B'∴△ABC∽△A'B'C'.【點(diǎn)睛】本題考查相似三角形的判定,解題的關(guān)鍵是熟練掌握相似三角形的判定定理:三邊對(duì)應(yīng)成比例的兩個(gè)三角形相似;兩邊對(duì)應(yīng)成比例及其夾角相等的兩個(gè)三角形相似.20、(1)見(jiàn)解析;(2)【解析】(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后的對(duì)應(yīng)點(diǎn)的位置,然后順次連接即可.(2)在旋轉(zhuǎn)過(guò)程中,C所經(jīng)過(guò)的路程為下圖中扇形的弧長(zhǎng),即利用扇形弧長(zhǎng)公式計(jì)算即可.【詳解】(1)如圖,連接OA、OB、OC并點(diǎn)O為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°得到A'、B'、C',連接A'B'、B'C'、A'C',△A'B'C'就是所求的三角形.(2)C在旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路程為扇形的弧長(zhǎng);所以【點(diǎn)睛】本題考查了旋轉(zhuǎn)作圖以及扇形的弧長(zhǎng)公式的計(jì)算,作出正確的圖形是解本題的關(guān)鍵.21、(1),y=x﹣1;(2);(3)x>2或﹣1<x<0【解析】(1)將A坐標(biāo)代入反比例解析式中求出m的值,確定出反比例解析式,再講B坐標(biāo)代入反比例解析式中求出a的值,確定出B的坐標(biāo),將A與B坐標(biāo)代入一次函數(shù)求出k與b的值,即可確定出一次函數(shù)解析式;

(2)對(duì)于一次函數(shù),令y=0求出x的值,確定出C的坐標(biāo),即OC的長(zhǎng),三角形AOB面積=三角形AOC面積+三角形BOC面積,求出即可;

(3)在圖象上找出一次函數(shù)值大于反比例函數(shù)值時(shí)x的范圍即可.【詳解】(1)把A(2,1)代入y=,得:m=2,∴反比例函數(shù)的解析式為y=,把B(﹣1,n)代入y=,得:n=﹣2,即B(﹣1,﹣2),將點(diǎn)A(2,1)、B(﹣1,﹣2)代入y=kx+b,得:,解得:,∴一次函數(shù)的解析式為y=x﹣1;(2)在一次函數(shù)y=x﹣1中,令y=0,得:x﹣1=0,解得:x=1,則S△AOB=×1×1+×1×2=;(3)由圖象可知,當(dāng)x>2或﹣1<x<0時(shí),一次函數(shù)的值大于反比例函數(shù)的值.【點(diǎn)睛】本題考查了一次函數(shù)與反比例函數(shù)的交點(diǎn)問(wèn)題,涉及的知識(shí)有:待定系數(shù)法求函數(shù)解析式,一次函數(shù)與坐標(biāo)軸的交點(diǎn),利用了數(shù)形結(jié)合的思想,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.22、(1);(2);(3)①;②的取值范圍是或.【分析】(1)根據(jù)t=3時(shí),A的坐標(biāo)可以求得是(3,-2),利用待定系數(shù)法即可求得拋物線的解析式,則B的坐標(biāo)可以求得;

(2)△OAB的面積一定,當(dāng)OA最小時(shí),B到OA的距離即△OAB中OA邊上的高最大,此時(shí)OA⊥AB,據(jù)此即可求解;

(3)①方法一:設(shè)AC,BD交于點(diǎn)E,直線l1:y=x-2,與x軸、y軸交于點(diǎn)P和Q(如圖1).由點(diǎn)D在拋物線C2:y=[x-(2t-4)]2+(t-2)上,可得=[(t-1)-(2t-4)]2+(t-2),解方程即可得到t的值;

方法二:設(shè)直線l1:y=x-2與x軸交于點(diǎn)P,過(guò)點(diǎn)A作y軸的平行線,過(guò)點(diǎn)B作x軸的平行線,交于點(diǎn)N.(如圖2),根據(jù)BD⊥AC,可得t-1=2t-,解方程即可得到t的值;

②設(shè)直線l1與l2交于點(diǎn)M.隨著點(diǎn)A從左向右運(yùn)動(dòng),從點(diǎn)D與點(diǎn)M重合,到點(diǎn)B與點(diǎn)M重合的過(guò)程中,可得滿足條件的t的取值范圍.【詳解】解:(1)∵點(diǎn)A在直線l1:y=x-2上,且點(diǎn)A的橫坐標(biāo)為3,

∴點(diǎn)A的坐標(biāo)為(3,-2),

∴拋物線C1的解析式為y=-x2-2,

∵點(diǎn)B在直線l1:y=x-2上,

設(shè)點(diǎn)B的坐標(biāo)為(x,x-2).

∵點(diǎn)B在拋物線C1:y=-x2-2上,

∴x-2=-x2-2,

解得x=3或x=-1.

∵點(diǎn)A與點(diǎn)B不重合,

∴點(diǎn)B的坐標(biāo)為(-1,-3),

∴由勾股定理得AB=.

(2)當(dāng)OA⊥AB時(shí),點(diǎn)B到直線OA的距離達(dá)到最大,則OA的解析式是y=-x,則

,解得:,

則點(diǎn)A的坐標(biāo)為(1,-1).(3)①方法一:設(shè),交于點(diǎn),直線,與軸、軸交于點(diǎn)和(如圖1).則點(diǎn)和點(diǎn)的坐標(biāo)分別為,.∴.∵.∵軸,∴軸.∴.∵,,∴.∵點(diǎn)在直線上,且點(diǎn)的橫坐標(biāo)為,∴點(diǎn)的坐標(biāo)為.∴點(diǎn)的坐標(biāo)為.∵軸,∴點(diǎn)的縱坐標(biāo)為.∵點(diǎn)在直線上,∴點(diǎn)的坐標(biāo)為.∴拋物線的解析式為.∵,∴點(diǎn)的橫坐標(biāo)為,∵點(diǎn)在直線上,∴點(diǎn)的坐標(biāo)為.∵點(diǎn)在拋物線上,∴.解得或.∵當(dāng)時(shí),點(diǎn)與點(diǎn)重合,∴方法二:設(shè)直線l1:y=x-2與x軸交于點(diǎn)P,過(guò)點(diǎn)A作y軸的平行線,過(guò)點(diǎn)B作x軸的平行線,交于點(diǎn)N.(如圖2)

則∠ANB=93°,∠ABN=∠OPB.

在△ABN中,BN=ABcos∠ABN,AN=ABsin∠ABN.

∵在拋物線C1隨頂點(diǎn)A平移的過(guò)程中,

AB的長(zhǎng)度不變,∠ABN的大小不變,

∴BN和AN的長(zhǎng)度也不變,即點(diǎn)A與點(diǎn)B的橫坐標(biāo)的差以及縱坐標(biāo)的差都保持不變.

同理,點(diǎn)C與點(diǎn)D的橫坐標(biāo)的差以及縱坐標(biāo)的差也保持不變.

由(1)知當(dāng)點(diǎn)A的坐標(biāo)為(3,-2)時(shí),點(diǎn)B的坐標(biāo)為(-1,-3),

∴當(dāng)點(diǎn)A的坐標(biāo)為(t,t-2)時(shí),點(diǎn)B的坐標(biāo)為(t-1,t-3).

∵AC∥x軸,

∴點(diǎn)C的縱坐標(biāo)為t-2.

∵點(diǎn)C在直線l2:y=x上,

∴點(diǎn)C的坐標(biāo)為(2t-4,t-2).

令t=2,則點(diǎn)C的坐標(biāo)為(3,3).

∴拋物線C2的解析式為y=x2.

∵點(diǎn)D在直線l2:y=x上,

∴設(shè)點(diǎn)D的坐標(biāo)為(x,).

∵點(diǎn)D在拋物線C2:y=x2上,

∴=x2.

解得x=或x=3.

∵點(diǎn)C與點(diǎn)D不重合,

∴點(diǎn)D的坐標(biāo)為(,).

∴當(dāng)點(diǎn)C的坐標(biāo)為(3,3)時(shí),點(diǎn)D的坐標(biāo)為(,).

∴當(dāng)點(diǎn)C的坐標(biāo)為(2t-4,t-2)時(shí),點(diǎn)D的坐標(biāo)為(2t?,t?).

∵BD⊥AC,

∴t?1=2t?.

∴t=.

②t的取值范圍是t<或t>4.

設(shè)直線l1與l2交于點(diǎn)M.隨著點(diǎn)A從左向右運(yùn)動(dòng),從點(diǎn)D與點(diǎn)M重合,到點(diǎn)B與點(diǎn)M重合的過(guò)程中,以A,B,C,D為頂點(diǎn)構(gòu)成的圖形不是凸四邊形.

【點(diǎn)睛】本題考查了二次函數(shù)綜合題,掌握待定系數(shù)法求得函數(shù)的解析式,點(diǎn)到直線的距離,平行于坐標(biāo)軸的點(diǎn)的特點(diǎn),方程思想的運(yùn)用是解題的關(guān)鍵.23、(1)見(jiàn)解析;(2)①AE=2,DE=4;②tan∠DBC=.【分析】(1)①證明△ABE≌△DCE(SAS),得出△ABE∽△DCE即可;②連接AC,由自相似菱形的定義即可得出結(jié)論;③由自相似菱形的性質(zhì)即可得出結(jié)論;(2)①由(1)③得△ABE∽△DEA,得出,求出AE=2,DE=4即可;②過(guò)E作EM⊥AD于M,過(guò)D作DN⊥BC于N,則四邊形DMEN是矩形,得出DN=EM,DM=EN,∠M=∠N=90°,設(shè)AM=x,則EN=DM=x+4,由勾股定理得出方程,解方程求出AM=1,EN=DM=5,由勾股定理得出DN=EM==,求出BN=7,再由三角函數(shù)定義即可得出答案.【詳解】解:(1)①正方形是自相似菱形,是真命題;理由如下:如圖3所示:∵四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∴AB=CD,BE=CE,∠ABE=∠DCE=90°,在△ABE和△DCE中,∴△ABE≌△DCE(SAS),∴△ABE∽△DCE,∴正方形是自相似菱形,故答案為:真命題;②有一個(gè)內(nèi)角為60°的菱形是自相似菱形,是假命題;理由如下:如圖4所示:連接AC,∵四邊形ABCD是菱形,∴AB=BC=CD,AD∥BC,AB∥CD,∵∠B=60°,∴△ABC是等邊三角形,∠DCE=120°,∵點(diǎn)E是BC的中點(diǎn),∴AE⊥BC,∴∠AEB=∠DAE=90°,∴只能△AEB與△DAE相似,∵AB∥CD,∴只能∠B=∠AED,若∠AED=∠B=60°,則∠CED=180°﹣90°﹣60°=30°,∴∠CDE=180°﹣120°﹣30°=30°,∴∠CED=∠CDE,∴CD=CE,不成立,∴有一個(gè)內(nèi)角為60°的菱形不是自相似菱形,故答案為:假命題;③若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E為BC中點(diǎn),則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED,是真命題;理由如下:∵∠ABC=α(0°<α<90°),∴∠C>90°,且∠ABC+∠C=180°,△ABE與△EDC不能相似,同理△AED與△EDC也不能相似,∵四邊形ABCD是菱形,∴AD∥BC,∴∠AEB=∠DAE,當(dāng)∠AED=∠B時(shí),△ABE∽△DEA,∴若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E為BC中點(diǎn),則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED,故答案為:真命題;(2)①∵菱形ABCD是自相似菱形,∠ABC是銳角,邊

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論