2023屆福建省泉州市洛江區(qū)北片區(qū)數(shù)學九年級上冊期末教學質(zhì)量檢測試題含解析_第1頁
2023屆福建省泉州市洛江區(qū)北片區(qū)數(shù)學九年級上冊期末教學質(zhì)量檢測試題含解析_第2頁
2023屆福建省泉州市洛江區(qū)北片區(qū)數(shù)學九年級上冊期末教學質(zhì)量檢測試題含解析_第3頁
2023屆福建省泉州市洛江區(qū)北片區(qū)數(shù)學九年級上冊期末教學質(zhì)量檢測試題含解析_第4頁
2023屆福建省泉州市洛江區(qū)北片區(qū)數(shù)學九年級上冊期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.二次函數(shù)的圖象如圖所示,若點A和B在此函數(shù)圖象上,則與的大小關系是()A. B. C. D.無法確定2.在中,,,若,則的長為()A. B. C. D.3.與三角形三個頂點距離相等的點,是這個三角形的()A.三條中線的交點B.三條角平分線的交點C.三條高的交點D.三邊的垂直平分線的交點4.下面是由幾個小正方體搭成的幾何體,則這個幾何體的左視圖為()A. B. C. D.5.若一個圓錐的底面積為,圓錐的高為,則該圓錐的側面展開圖中圓心角的度數(shù)為()A. B. C. D.6.拋物線y=x2-2x+m與x軸有兩個交點,則m的取值范圍為()A.m>1 B.m≥1 C.m<1 D.m≤17.如圖,在中,已知點在上,點在上,,,下列結論中正確的是()A. B. C. D.8.在矩形ABCD中,AB=12,P是邊AB上一點,把△PBC沿直線PC折疊,頂點B的對應點是G,過點B作BE⊥CG,垂足為E,且在AD上,BE交PC于點F,那么下列選項正確的是()①BP=BF;②如圖1,若點E是AD的中點,那么△AEB≌△DEC;③當AD=25,且AE<DE時,則DE=16;④在③的條件下,可得sin∠PCB=;⑤當BP=9時,BE?EF=108.A.①②③④ B.①②④⑤ C.①②③⑤ D.①②③④⑤9.定點投籃是同學們喜愛的體育項目之一,某位同學投出籃球的飛行路線可以看作是拋物線的一部分,籃球飛行的豎直高度(單位:)與水平距離(單位:)近似滿足函數(shù)關系(a≠0).下表記錄了該同學將籃球投出后的與的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出籃球飛行到最高點時,水平距離為()x(單位:m)y(單位:m)3.05A. B. C. D.10.兩個全等的等腰直角三角形,斜邊長為2,按如圖放置,其中一個三角形45°角的項點與另一個三角形的直角頂點A重合,若三角形ABC固定,當另一個三角形繞點A旋轉(zhuǎn)時,它的角邊和斜邊所在的直線分別與邊BC交于點E、F,設BF=CE=則關于的函數(shù)圖象大致是()A. B. C. D.二、填空題(每小題3分,共24分)11.一圓錐的母線長為5,底面半徑為3,則該圓錐的側面積為________.12.若函數(shù)y=(a-1)x2-4x+2a的圖象與x軸有且只有一個交點,則a的值為_____.13.如圖,在菱形ABCD中,∠B=60o,E是CD上一點,將△ADE折疊,折痕為AE,點D的對應點為點D’,AD’與BC交于點F,若F為BC中點,則∠AED=______.14.如圖,在平面直角坐標系中,OB在x軸上,∠ABO=90°,點A的坐標為(2,4),將△AOB繞點A逆時針旋轉(zhuǎn)90°,點O的對應點C恰好落在反比例函數(shù)y=的圖象上,則k的值為_____.15.方程的一次項系數(shù)是________.16.經(jīng)過點的反比例函數(shù)的解析式為__________.17.計算________________.18.已知關于x的方程的一個根為2,則這個方程的另一個根是▲.三、解答題(共66分)19.(10分)已知:反比例函數(shù)和一次函數(shù),且一次函數(shù)的圖象經(jīng)過點.(1)試求反比例函數(shù)的解析式;(2)若點在第一象限,且同時在上述兩個函數(shù)的圖象上,求點的坐標.20.(6分)如圖3,小明用一張邊長為的正方形硬紙板設計一個無蓋的長方體紙盒,從四個角各剪去一個邊長為的正方形,再折成如圖3所示的無蓋紙盒,記它的容積為.(3)關于的函數(shù)表達式是__________,自變量的取值范圍是___________.(3)為探究隨的變化規(guī)律,小明類比二次函數(shù)進行了如下探究:①列表:請你補充表格中的數(shù)據(jù):33.533.533.53333.533.53.53②描點:把上表中各組對應值作為點的坐標,在平面直角坐標系中描出相應的點;③連線:用光滑的曲線順次連結各點.(3)利用函數(shù)圖象解決:若該紙盒的容積超過,估計正方形邊長的取值范圍.(保留一位小數(shù))21.(6分)如圖為一機器零件的三視圖.(1)請寫出符合這個機器零件形狀的幾何體的名稱;(2)若俯視圖中三角形為正三角形,那么請根據(jù)圖中所標的尺寸,計算這個幾何體的表面積(單位:cm2)22.(8分)在一個不透明的盒子里裝有黑、白兩種顏色的球共50個,這些球除顏色外其余完全相同.王穎做摸球試驗,攪勻后,她從盒子里隨機摸出一個球記下顏色后,再把球放回盒子中,不斷重復上述過程,如表是試驗中的一組統(tǒng)計數(shù)據(jù):摸球的次數(shù)n10020030050080010003000摸到白球的次數(shù)m651241783024806001800摸到白球的頻率0.650.620.5930.6040.60.60.6(1)請估計:當n很大時,摸到白球的頻率將會接近;(精確到0.1)(2)若從盒子里隨機摸出一個球,則摸到白球的概率的估計值為;(3)試估算盒子里黑、白兩種顏色的球各有多少個?23.(8分)如圖,在△ABC中,∠C=90°,DE⊥AB于E,DF⊥BC于F.求證:△DEH∽△BCA.24.(8分)如圖,某小區(qū)規(guī)劃在一個長,寬的矩形場地上,修建兩橫兩豎四條同樣寬的道路,且橫、豎道路分別與矩形的長、寬平行,其余部分種草坪,若使每塊草坪的面積都為.應如何設計道路的寬度?25.(10分)如圖,在中,,,為外一點,將繞點按順時針方向旋轉(zhuǎn)得到,且點、、三點在同一直線上.(1)(觀察猜想)在圖①中,;在圖②中,(用含的代數(shù)式表示)(2)(類比探究)如圖③,若,請補全圖形,再過點作于點,探究線段,,之間的數(shù)量關系,并證明你的結論;(3)(問題解決)若,,,求點到的距離.26.(10分)某校3男2女共5名學生參加黃石市教育局舉辦的“我愛黃石”演講比賽.(1)若從5名學生中任意抽取3名,共有多少種不同的抽法,列出所有可能情形;(2)若抽取的3名學生中,某男生抽中,且必有1女生的概率是多少?

參考答案一、選擇題(每小題3分,共30分)1、A【分析】由圖象可知拋物線的對稱軸為直線,所以設點A關于對稱軸對稱的點為點C,如圖,此時點C坐標為(-4,y1),點B與點C都在對稱軸左邊,從而利用二次函數(shù)的增減性判斷即可.【詳解】解:∵拋物線的對稱軸為直線,∴設點A關于對稱軸對稱的點為點C,∴點C坐標為(-4,y1),此時點A、B、C的大體位置如圖所示,∵當時,y隨著x的增大而減小,,∴.故選:A.【點睛】本題主要考查了二次函數(shù)的圖象與性質(zhì),屬于基本題型,熟練掌握二次函數(shù)的性質(zhì)是解題關鍵.2、A【解析】根據(jù)解直角三角形的三角函數(shù)解答即可【詳解】如圖,∵cos53°=,∴AB=故選A【點睛】此題考查解直角三角形的三角函數(shù)解,難度不大3、D【分析】可分別根據(jù)線段垂直平分線的性質(zhì)進行思考,首先滿足到A點、B點的距離相等,然后思考滿足到C點、B點的距離相等,都分別在各自線段的垂直平分線上,于是答案可得.【詳解】解:如圖:∵OA=OB,∴O在線段AB的垂直平分線上,∵OB=OC,∴O在線段BC的垂直平分線上,∵OA=OC,∴O在線段AC的垂直平分線上,又三個交點相交于一點,∴與三角形三個頂點距離相等的點,是這個三角形的三邊的垂直平分線的交點.故選:D.【點睛】此題主要考查垂直平分線的性質(zhì),解題的關鍵是熟知線段垂直平分線上的點到線段兩個端點距離相等.4、D【分析】根據(jù)幾何體的三視圖的定義以及性質(zhì)進行判斷即可.【詳解】根據(jù)幾何體的左視圖的定義以及性質(zhì)得,這個幾何體的左視圖為故答案為:D.【點睛】本題考查了幾何體的三視圖,掌握幾何體三視圖的性質(zhì)是解題的關鍵.5、C【分析】根據(jù)圓錐底面積求得圓錐的底面半徑,然后利用勾股定理求得母線長,根據(jù)圓錐的母線長等于展開圖扇形的半徑,求出圓錐底面圓的周長,也即是展開圖扇形的弧長,然后根據(jù)弧長公式可求出圓心角的度數(shù).【詳解】解:∵圓錐的底面積為4πcm2,

∴圓錐的底面半徑為2cm,

∴底面周長為4π,

圓錐的高為4cm,

∴由勾股定理得圓錐的母線長為6cm,

設側面展開圖的圓心角是n°,

根據(jù)題意得:=4π,

解得:n=1.

故選:C.【點睛】本題考查了圓錐的計算,正確理解圓錐的側面展開圖與原來的扇形之間的關系是解決本題的關鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.6、C【分析】拋物線與軸有兩個交點,則,從而求出的取值范圍.【詳解】解:∵拋物線與軸有兩個交點∴∴∴故選:C【點睛】本題考查了拋物線與軸的交點問題,注:①拋物線與軸有兩個交點,則;②拋物線與軸無交點,則;③拋物線與軸有一個交點,則.7、B【分析】由,得∠CMN=∠CNM,從而得∠AMB=∠∠ANC,結合,即可得到結論.【詳解】∵,∴∠CMN=∠CNM,∴180°-∠CMN=180°-∠CNM,即:∠AMB=∠∠ANC,∵,∴,故選B.【點睛】本題主要考查相似三角形的判定定理,掌握“對應邊成比例,夾角相等的兩個三角形相似”是解題的關鍵.8、C【分析】易證BE∥PG可得∠FPG=∠PFB,再由折疊的性質(zhì)得∠FPB=∠FPG,所以∠FPB=∠PFB,根據(jù)等邊對等角即可判斷①;由矩形的性質(zhì)得∠A=∠D=90°,AB=CD,用SAS即可判定全等,從而判斷②;證明△ABE∽△DEC,得出比例式建立方程求出DE,從而判斷③;證明△ECF∽△GCP,進而求出PC,即可得到sin∠PCB的值,從而判斷④;證明△GEF∽△EAB,利用對應邊成比例可得出結論,從而判斷⑤.【詳解】①∵四邊形ABCD為矩形,頂點B的對應點是G,∴∠G=90°,即PG⊥CG,∵BE⊥CG∴BE∥PG∴∠FPG=∠PFB由折疊的性質(zhì)可得∠FPB=∠FPG,∴∠FPB=∠PFB∴BP=BF,故①正確;②∵四邊形ABCD為矩形,∴∠A=∠D=90°,AB=DC又∵點E是AD的中點,∴AE=DE在△AEB和△DEC中,∴△AEB≌△DEC(SAS),故②正確;③當AD=25時,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,即,解得AE=9或16,∵AE<DE,∴AE=9,DE=16,故③正確;④在Rt△ABE中,在Rt△CDE中,由①可知BE∥PG,∴△ECF∽△GCP∴設BP=BF=PG=a,則EF=BE-BF=15-a,由折疊性質(zhì)可得CG=BC=25,∴,解得,在Rt△PBC中,∴sin∠PCB=,故④錯誤.⑤如圖,連接FG,

∵∠GEF=∠PGC=90°,

∴∠GEF+∠PGC=180°,

∴BF∥PG

∵BF=PG,

∴四邊形BPGF是菱形,

∴BP∥GF,GF=BP=9

∴∠GFE=∠ABE,

∴△GEF∽△EAB,

∴BE?EF=AB?GF=12×9=108,故⑤正確;①②③⑤正確,故選C.【點睛】本題考查四邊形綜合問題,難度較大,需要熟練掌握全等三角形的判定,相似三角形的判定和性質(zhì),以及勾股定理和三角函數(shù),綜合運用所學幾何知識是關鍵.9、C【分析】用待定系數(shù)法可求二次函數(shù)的表達式,從而可得出答案.【詳解】將代入中得解得∴∵∴當時,故選C【點睛】本題主要考查待定系數(shù)法求二次函數(shù)的解析式及二次函數(shù)的最大值,掌握二次函數(shù)的圖象和性質(zhì)是解題的關鍵.10、C【分析】由題意得∠B=∠C=45°,∠G=∠EAF=45°,推出△ACE∽△ABF,得到∠AEC=∠BAF,根據(jù)相似三角形的性質(zhì)得到

,于是得到結論.【詳解】解:如圖:由題意得∠B=∠C=45°,∠G=∠EAF=45°,∵∠AFE=∠C+∠CAF=45°+∠CAF,∠CAE=45°+∠CAF,∴∠AFB=∠CAE,∴△ACE∽△ABF,∴∠AEC=∠BAF,∴△ABF∽△CAE,∴,又∵△ABC是等腰直角三角形,且BC=2,∴AB=AC=,又BF=x,CE=y(tǒng),∴,即xy=2,(1<x<2).故選:C.【點睛】本題考查了相似三角形的判定,考查了相似三角形對應邊比例相等的性質(zhì),本題中求證△ABF∽△ACE是解題的關鍵.二、填空題(每小題3分,共24分)11、15π【分析】利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式計算.【詳解】圓錐的側面積=?2π?3?5=15π.

故答案是:15π.【點睛】考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.12、-1或2或1【分析】分該函數(shù)是一次函數(shù)和二次函數(shù)兩種情況求解,若為二次函數(shù),由拋物線與x軸只有一個交點時b2-4ac=0,據(jù)此求解可得.【詳解】∵函數(shù)y=(a-1)x2-4x+2a的圖象與x軸有且只有一個交點,當函數(shù)為二次函數(shù)時,b2-4ac=16-4(a-1)×2a=0,解得:a1=-1,a2=2,當函數(shù)為一次函數(shù)時,a-1=0,解得:a=1.故答案為-1或2或1.13、75o【分析】如圖(見解析),連接AC,易證是等邊三角形,從而可得,又由可得,再根據(jù)折疊的性質(zhì)得,最后在中利用三角形的內(nèi)角和定理即可得.【詳解】如圖,連接AC在菱形ABCD中,是等邊三角形F為BC中點(等腰三角形三線合一的性質(zhì)),即(兩直線平行,同旁內(nèi)角互補)又由折疊的性質(zhì)得:在中,由三角形的內(nèi)角和定理得:故答案為:.【點睛】本題是一道較好的綜合題,考查了菱形的性質(zhì)、等邊三角形的性質(zhì)、平行線的性質(zhì)、圖形折疊的性質(zhì)、三角形的內(nèi)角和定理,利用三線合一的性質(zhì)證出是解題關鍵.14、1【解析】根據(jù)題意和旋轉(zhuǎn)的性質(zhì),可以得到點C的坐標,把點C坐標代入反比例函數(shù)y=中,即可求出k的值.【詳解】∵OB在x軸上,∠ABO=90°,點A的坐標為(2,4),∴OB=2,AB=4∵將△AOB繞點A逆時針旋轉(zhuǎn)90°,∴AD=4,CD=2,且AD//x軸∴點C的坐標為(6,2),∵點O的對應點C恰好落在反比例函數(shù)y=的圖象上,

∴k=2,故答案為1.【點睛】本題考查反比例函數(shù)圖象上點的坐標特征、坐標與圖形的變化-旋轉(zhuǎn),解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.15、-3【解析】對于一元二次方程的一般形式:,其中叫做二次項,叫做一次項,為常數(shù)項,進而直接得出答案.【詳解】方程的一次項是,∴一次項系數(shù)是:故答案是:.【點睛】本題主要考查了一元二次方程的一般形式,正確得出一次項系數(shù)是解題關鍵.16、【分析】設出反比例函數(shù)解析式解析式,然后利用待定系數(shù)法列式求出k值,即可得解.【詳解】設反比例函數(shù)解析式為,則,解得:,∴此函數(shù)的解析式為.故答案為:.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)解析式及特殊角的三角函數(shù)值,設出函數(shù)的表達式,然后把點的坐標代入求解即可,比較簡單.17、【分析】根據(jù)負整數(shù)指數(shù)冪的計算法則及立方根的定義進行計算即可.【詳解】解:原式=1-8=-1.故答案為:-1.【點睛】本題考查實數(shù)的運算,屬于??蓟A題,明確負整數(shù)指數(shù)冪的計算法則及立方根的定義是解題的關鍵.18、-1.【解析】∵方程的一個根為2,設另一個為a,∴2a=-6,解得:a=-1.三、解答題(共66分)19、(1);(2).【分析】(1)將點代入中即可求出k的值,求得反比例函數(shù)的解析式;(2)根據(jù)題意列出方程組,根據(jù)點在第一象限解出方程組即可.【詳解】(1)一次函數(shù)的圖象經(jīng)過點反比例函數(shù)的解析式為(2)由已知可得方程組,解得或經(jīng)檢驗,當或時,,所以方程組的解為或∵點在第一象限∴【點睛】本題考查了一次函數(shù)和反比例函數(shù)的問題,掌握一次函數(shù)和反比例函數(shù)的性質(zhì)、解二元一次方程組的方法是解題的關鍵.20、(3),;(3)①36,8;②見解析;③見解析;(3)(或)【分析】(3)先根據(jù)已知條件用含x的式子表示出長方體底面邊長,再乘以長方體的高即可;

(3)①根據(jù)(3)得出的關系式求當x=3、3時對應的y的值補充表格;②③根據(jù)描點法畫出函數(shù)圖像即可;(3)根據(jù)圖像知y=33時,x的值由兩個,再估算x的值,再根據(jù)圖像由y>33,得出x的取值范圍即可.【詳解】解:(3)由題意可得,無蓋紙盒的底面是一個正方形,且邊長為(6-3x)cm,∴,x的取值范圍為:3<6-3x<6,解得.故答案為:;;(3)①當x=3時,y=4-34+36=36;當x=3時,y=4×8-34×4+36×3=8;故答案為:36,8;②③如圖所示:(3)由圖像可知,當y=33時,3<x<3,或3<x<3,①當3<x<3時,當x=3.4時,y=33.836,當x=3.5時,y=33.5,∴當y=33時,x≈3.5(或3.4);②當3<x<3時,當x=3.6時,y=33.544,當x=3.7時,y=33.493,∴當y=33時,x≈3.6(或3.7),∴當y>33時,x的取值范圍是(或).【點睛】本題主要考查列函數(shù)關系式、函數(shù)圖像的畫法、根的估算以及函數(shù)的性質(zhì),解題的關鍵是掌握基本概念和性質(zhì).21、(1)直三棱柱;(2)【解析】試題分析:(1)有2個視圖的輪廓是長方形,那么這個幾何體為棱柱,另一個視圖是三角形,那么該幾何體為三棱柱;(2)根據(jù)正三角形一邊上的高可得正三角形的邊長,表面積=側面積+2個底面積=底面周長×高+2個底面積.試題解析:(1)符合這個零件的幾何體是直三棱柱;(2)如圖,△ABC是正三角形,CD⊥AB,CD=2,,在Rt△ADC中,,解得AC=4,∴S表面積=4×2×3+2××4×2=(24+8)(cm2).22、(1)0.6;(2)0.6;(3)盒子里黑顏色的球有20只,盒子白顏色的球有30只【分析】(1)觀察表格找到逐漸穩(wěn)定到的常數(shù)即可;(2)概率接近于(1)得到的頻率;(3)白球個數(shù)=球的總數(shù)×得到的白球的概率,讓球的總數(shù)減去白球的個數(shù)即為黑球的個數(shù),問題得解.【詳解】(1)∵摸到白球的頻率約為0.6,∴當n很大時,摸到白球的頻率將會接近0.6;故答案為:0.6;(2)∵摸到白球的頻率為0.6,∴若從盒子里隨機摸出一只球,則摸到白球的概率的估計值為0.6;(3)黑白球共有20只,白球為:50×0.6=30(只),黑球為:50﹣30=20(只).答:盒子里黑顏色的球有20只,盒子白顏色的球有30只.【點睛】考查利用頻率估計概率.大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:部分的具體數(shù)目=總體數(shù)目×相應頻率.23、詳見解析.【分析】△DEH與△ABC均為直角三角形,可利用等角的余角相等再求出一組銳角對應相等即可.【詳解】證明:∵DE⊥AB,DF⊥BC,∴∠D+∠DHE=∠B+∠BHF=90°而∠BHF=∠DHE,∴∠D=∠B,又∵∠DEH=∠C=90°,∴△DEH∽△BCA.【點睛】此題考查的是相似三角形的判定和互余的性質(zhì),掌握有兩組對應角相等的兩個三角形相似和等角的余角相等是解決此題的關鍵.24、道路的寬度應設計為1m.【分析】設道路的寬度為m,橫、豎道路分別有2條,所以草坪的寬為:(20-2x)m,長為:(30-2x)m,草坪的總面積為56×9,根據(jù)長方形的面積公式即可得出結果.【詳解】解:設道路的寬度為m.由題意得:化簡得:解得:,(舍)答:道路的寬度應設計為1m.【點睛】本題考查的是一元二次方程的實際應用,根據(jù)題目條件進行設未知數(shù),列出方程并且求解是解題的關鍵.25、(1);;(2),證明見解析;(3)點到的距離為或.【分析】(1)在圖①中由旋轉(zhuǎn)可知,由三角形內(nèi)角和可知∠OAB+∠OBA+∠AOB=180°,∠PAB+∠PBA+∠APB=180°,因為,∠OAP+∠PAB=∠OAB,所以∠APB=∠AOB=α;在圖②中,由旋轉(zhuǎn)可知,得到∠OBP+OAP=180°,通過四邊形OAPB的內(nèi)角和為360°,可以得到∠AOB+∠APB=180°,因此∠APB=;(2)由旋轉(zhuǎn)可知≌,,,,因為,得到,即可得證;(3)當點在上方時,過點作于點,由條件可求得PA,再由可求出OH;當點/

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論