2023屆廣東省佛山市南海區(qū)新芳華學校數(shù)學九年級上冊期末統(tǒng)考模擬試題含解析_第1頁
2023屆廣東省佛山市南海區(qū)新芳華學校數(shù)學九年級上冊期末統(tǒng)考模擬試題含解析_第2頁
2023屆廣東省佛山市南海區(qū)新芳華學校數(shù)學九年級上冊期末統(tǒng)考模擬試題含解析_第3頁
2023屆廣東省佛山市南海區(qū)新芳華學校數(shù)學九年級上冊期末統(tǒng)考模擬試題含解析_第4頁
2023屆廣東省佛山市南海區(qū)新芳華學校數(shù)學九年級上冊期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.從一張圓形紙板剪出一個小圓形和一個扇形,分別作為圓錐體的底面和側(cè)面,下列的剪法恰好配成一個圓錐體的是()A. B. C. D.2.如圖,在△ABC中,點D在邊AB上,且AD=5cm,DB=3cm,過點D作DE∥BC,交邊AC于點E,將△ADE沿著DE折疊,得△MDE,與邊BC分別交于點F,G.若△ABC的面積為32cm2,則四邊形DEGF的面積是()A.10cm2 B.10.5cm2 C.12cm2 D.12.5cm23.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB,BD于M,N兩點.若AM=2,則線段ON的長為()A. B. C.1 D.4.下列不是中心對稱圖形的是()A. B. C. D.5.對于題目“如圖,在中,是邊上一動點,于點,點在點的右側(cè),且,連接,從點出發(fā),沿方向運動,當?shù)竭_點時,停止運動,在整個運動過程中,求陰影部分面積的大小變化的情況"甲的結(jié)果是先增大后減小,乙的結(jié)果是先減小后增大,其中()A.甲的結(jié)果正確 B.乙的結(jié)果正確C.甲、乙的結(jié)果都不正確,應是一直增大 D.甲、乙的結(jié)果都不正確,應是一直減小6.如圖,過x軸正半軸上的任意一點P,作y軸的平行線,分別與反比例函數(shù)和的圖象交于A、B兩點.若點C是y軸上任意一點,連接AC、BC,則△ABC的面積為()A.3 B.4 C.5 D.107.拋物線y=(x﹣2)2﹣3的頂點坐標是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)8.如圖,AB為⊙O的直徑,點C在⊙O上,若,,則的長為()A. B. C. D.9.如圖,△AOB縮小后得到△COD,△AOB與△COD的相似比是3,若C(1,2),則點A的坐標為()A.(2,4) B.(2,6) C.(3,6) D.(3,4)10.兩個相似多邊形的面積比是9∶16,其中小多邊形的周長為36cm,則較大多邊形的周長為)A.48cm B.54cm C.56cm D.64cm11.如圖,直角坐標平面內(nèi)有一點,那么與軸正半軸的夾角的余切值為()A.2 B. C. D.12.已知關于x的二次方程有兩個實數(shù)根,則k的取值范圍是()A. B.且 C. D.且二、填空題(每題4分,共24分)13.如圖,AB是⊙O的直徑,且AB=4,點C是半圓AB上一動點(不與A,B重合),CD平分∠ACB交⊙O于點D,點I是△ABC的內(nèi)心,連接BD.下列結(jié)論:①點D的位置隨著動點C位置的變化而變化;②ID=BD;③OI的最小值為;④ACBC=CD.其中正確的是_____________.(把你認為正確結(jié)論的序號都填上)14.某市為提倡居民節(jié)約用水,自今年1月1日起調(diào)整居民用水價格.圖中、分別表示去年、今年水費(元)與用水量()之間的關系.小雨家去年用水量為150,若今年用水量與去年相同,水費將比去年多_____元.15.把二次函數(shù)變形為的形式,則__________.16.某10人數(shù)學小組的一次測試中,有4人的成績都是80分,其他6人的成績都是90分,則這個小組成績的平均數(shù)等于_____分.17.共享單車進入昆明市已兩年,為市民的低碳出行帶來了方便,據(jù)報道,昆明市共享單車投放量已達到240000輛,數(shù)字240000用科學記數(shù)法表示為_____.18.如圖,半圓的半徑為4,初始狀態(tài)下其直徑平行于直線.現(xiàn)讓半圓沿直線進行無滑動滾動,直到半圓的直徑與直線重合為止.在這個滾動過程中,圓心運動路徑的長度等于_________.三、解答題(共78分)19.(8分)解方程:(1)x2+4x﹣5=0(2)x(2x+3)=4x+620.(8分)某市射擊隊為從甲、乙兩名運動員中選拔一人參加省比賽,對他們進行了四次測試,測試成績?nèi)绫恚▎挝唬涵h(huán)):第一次第二次第三次第四次甲9887乙10679(1)根據(jù)表格中的數(shù)據(jù),分別計算甲、乙兩名運動員的平均成績;(2)分別計算甲、乙兩人四次測試成績的方差;根據(jù)計算的結(jié)果,你認為推薦誰參加省比賽更合適?請說明理由.21.(8分)計算:22.(10分)圖①、圖②均是6×6的正方形網(wǎng)格,每個小正方形的頂點稱為格點.線段AB的端點均在格點上,按下列要求畫出圖形.(1)在圖①中找到兩個格點C,使∠BAC是銳角,且tan∠BAC=;(2)在圖②中找到兩個格點D,使∠ADB是銳角,且tan∠ADB=1.23.(10分)化簡求值:,其中24.(10分)如圖,已知、兩點的坐標分別為,,直線與反比例函數(shù)的圖象相交于點和點.(1)求直線與反比例函數(shù)的解析式;(2)求的度數(shù);(3)將繞點順時針方向旋轉(zhuǎn)角(為銳角),得到,當為多少度時,并求此時線段的長度.25.(12分)如圖,已知在菱形ABCD中,∠ABC=60°,對角線AC=8,求菱形ABCD的周長和面積.26.小明和小亮兩人一起玩投擲一個普通正方體骰子的游戲.(1)說出游戲中必然事件,不可能事件和隨機事件各一個;(2)如果兩個骰子上的點數(shù)之積為奇數(shù),小明勝,否則小亮勝,你認為這個游戲公平嗎?如果不公平,誰獲勝的可能性較大?請說明理由.請你為他們設計一個公平的游戲規(guī)則.

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)圓錐的底面圓的周長等于扇形弧長,只要圖形中兩者相等即可配成一個圓錐體即可.【詳解】選項A、C、D中,小圓的周長和扇形的弧長都不相等,故不能配成一個圓錐體,只有B符合條件.故選B.【點睛】本題考查了學生的動手能力及空間想象能力.對于此類問題,學生只要親自動手操作,答案就會很直觀地呈現(xiàn).2、B【分析】根據(jù)相似多邊形的性質(zhì)進行計算即可;【詳解】∵DE∥BC,∴,,又由折疊知,∴,∴DB=DF,∵,,∴,即,∴,∴,同理可得:,∴四邊形DEGF的面積.故答案選B.【點睛】本題主要考查了相似多邊形的性質(zhì),準確計算是解題的關鍵.3、C【分析】作MH⊥AC于H,如圖,根據(jù)正方形的性質(zhì)得∠MAH=45°,則△AMH為等腰直角三角形,所以AH=MH=AM=,再根據(jù)角平分線性質(zhì)得BM=MH=,則AB=2+,于是利用正方形的性質(zhì)得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后證明△CON∽△CHM,再利用相似比可計算出ON的長.【詳解】試題分析:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故選C.【點睛】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.也考查了角平分線的性質(zhì)和正方形的性質(zhì).4、A【分析】根據(jù)中心對稱圖形的定義,逐一判斷選項,即可.【詳解】∵A是軸對稱圖形,不是中心對稱圖形,∴A符合題意,∵B是中心對稱圖形,∴B不符合題意,∵C是中心對稱圖形,∴C不符合題意,∵D是中心對稱圖形,∴D不符合題意,故選A.【點睛】本題主要考查中心對稱圖形的定義,掌握中心對稱圖形的定義是解題的關鍵.5、B【分析】設PD=x,AB邊上的高為h,求出AD、h,構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)解決問題即可.【詳解】解:在中,∵,∴,設,邊上的高為,則.∵,∴,∴,∴,∴,∴當時,的值隨的增大而減小,當時,的值隨的增大而增大,∴乙的結(jié)果正確.故選B.【點睛】本題考查相似三角形的判定和性質(zhì),動點問題的函數(shù)圖象,三角形面積,勾股定理等知識,解題的關鍵是構(gòu)建二次函數(shù),學會利用二次函數(shù)的增減性解決問題,屬于中考??碱}型.6、C【分析】設P(a,0),由直線AB∥y軸,則A,B兩點的橫坐標都為a,而A,B分別在反比例函數(shù)圖象上,可得到A點坐標為(a,-),B點坐標為(a,),從而求出AB的長,然后根據(jù)三角形的面積公式計算即可.【詳解】設P(a,0),a>0,∴A和B的橫坐標都為a,OP=a,將x=a代入反比例函數(shù)y=﹣中得:y=﹣,∴A(a,﹣);將x=a代入反比例函數(shù)y=中得:y=,∴B(a,),∴AB=AP+BP=+=,則S△ABC=AB?OP=××a=1.故選C.【點睛】此題考查了反比例函數(shù),以及坐標與圖形性質(zhì),其中設出P的坐標,表示出AB的長是解本題的關鍵.7、A【解析】已知拋物線解析式為頂點式,可直接寫出頂點坐標.【詳解】:∵y=(x﹣2)2﹣3為拋物線的頂點式,根據(jù)頂點式的坐標特點可知,

∴拋物線的頂點坐標為(2,-3).

故選A..【點睛】本題考查了將解析式化為頂點式y(tǒng)=a(x-h)2+k,頂點坐標是(h,k),對稱軸是x=h.8、B【分析】直接利用等腰三角形的性質(zhì)得出∠A的度數(shù),再利用圓周角定理得出∠BOC的度數(shù),再利用弧長公式求出答案.【詳解】解:∵∠OCA=50°,OA=OC,

∴∠A=50°,

∴∠BOC=2∠A=100°,

∵AB=4,

∴BO=2,∴的長為:故選B.【點睛】此題主要考查了弧長公式應用以及圓周角定理,正確得出∠BOC的度數(shù)是解題關鍵.9、C【解析】根據(jù)位似變換的性質(zhì)計算即可.【詳解】由題意得,點A與點C是對應點,△AOB與△COD的相似比是3,∴點A的坐標為(1×3,2×3),即(3,6),故選:C.【點睛】本題考查的是位似變換的性質(zhì),掌握在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或﹣k是解題的關鍵.10、A【解析】試題分析:根據(jù)相似多邊形對應邊之比、周長之比等于相似比,而面積之比等于相似比的平方計算即可.解:兩個相似多邊形的面積比是9:16,面積比是周長比的平方,則大多邊形與小多邊形的相似比是4:1.相似多邊形周長的比等于相似比,因而設大多邊形的周長為x,則有=,解得:x=2.大多邊形的周長為2cm.故選A.考點:相似多邊形的性質(zhì).11、B【分析】作PA⊥x軸于點A,構(gòu)造直角三角形,根據(jù)三角函數(shù)的定義求解.【詳解】過P作x軸的垂線,交x軸于點A,

∵P(2,4),

∴OA=2,AP=4,.

∴∴.故選B.【點睛】本題考查的知識點是銳角三角函數(shù)的定義,解題關鍵是熟記三角函數(shù)的定義.12、B【分析】根據(jù)一元二次方程根的判別式讓?=b2?4ac≥1,且二次項的系數(shù)不為1保證此方程為一元二次方程.【詳解】解:由題意得:且,解得:且,故選:B.【點睛】本題考查了一元二次方程根的判別式,方程有2個實數(shù)根應注意兩種情況:?≥1,二次項的系數(shù)不為1.二、填空題(每題4分,共24分)13、②④【分析】①在同圓或等圓中,根據(jù)圓周角相等,則弧相等可作判斷;②連接IB,根據(jù)點I是△ABC的內(nèi)心,得到,可以證得,即有,可以判斷②正確;③當OI最小時,經(jīng)過圓心O,作,根據(jù)等腰直角三角形的性質(zhì)和勾股定理,可求出,可判斷③錯誤;④用反證法證明即可.【詳解】解:平分,AB是⊙O的直徑,,,是的直徑,是半圓的中點,即點是定點;故①錯誤;如圖示,連接IB,∵點I是△ABC的內(nèi)心,∴又∵,∴即有∴,故②正確;如圖示,當OI最小時,經(jīng)過圓心O,過I點,作,交于點∵點I是△ABC的內(nèi)心,經(jīng)過圓心O,∴,∵∴是等腰直角三角形,又∵,∴,設,則,,∴,解之得:,即:,故③錯誤;假設,∵點C是半圓AB上一動點,則點C在半圓AB上對于任意位置上都滿足,如圖示,當經(jīng)過圓心O時,,,∴與假設矛盾,故假設不成立,∴故④正確;綜上所述,正確的是②④,故答案是:②④【點睛】此題考查了三角形的內(nèi)心的定義和性質(zhì),等腰直角三角形的判定與性質(zhì),三角形外接圓有關的性質(zhì),角平分線的定義等知識點,熟悉相關性質(zhì)是解題的關鍵.14、1.【分析】根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得時,對應的函數(shù)解析式,從而可以求得時對應的函數(shù)值,由的的圖象可以求得時對應的函數(shù)值,從而可以計算出題目中所求問題的答案,本題得以解決.【詳解】設當時,對應的函數(shù)解析式為,,得,即當時,對應的函數(shù)解析式為,當時,,由圖象可知,去年的水價是(元/),故小雨家去年用水量為150,需要繳費:(元),(元),即小雨家去年用水量為150,若今年用水量與去年相同,水費將比去年多1元,故答案為:1.【點睛】本題考查一次函數(shù)的應用,解答本題的關鍵是明確題意,利用一次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.15、【分析】利用配方法將二次函數(shù)變成頂點式即可.【詳解】,∴h=2,k=-9,即h+k=2-9=-7.故答案為:-7.【點睛】本題考查二次函數(shù)頂點式的性質(zhì),關鍵在于將一般式轉(zhuǎn)換為頂點式.16、1.【分析】根據(jù)平均數(shù)的定義解決問題即可.【詳解】平均成績=(4×80+6×90)=1(分),故答案為1.【點睛】本題考查平均數(shù)的定義,解題的關鍵是掌握平均數(shù)的定義.17、2.4×1【解析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將240000用科學記數(shù)法表示為:2.4×1.故答案為2.4×1.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.18、【分析】由圖可知,圓心運動路徑的長度主要分兩部分求解,從初始狀態(tài)到垂直狀態(tài),圓心一直在一條直線上;從垂直狀態(tài)到重合狀態(tài),圓心運動軌跡是圓周,計算兩部分結(jié)果,相加即可.【詳解】由題意知:半圓的半徑為4,∴從初始狀態(tài)到垂直狀態(tài),圓心運動路徑的長度=.∴從垂直狀態(tài)到重合狀態(tài),圓心運動路徑的長度=.即圓心運動路徑的總長度=.故答案為.【點睛】本題主要考查了弧長公式和圓周公式,正確掌握弧長公式和圓周公式是解題的關鍵.三、解答題(共78分)19、(1)x1=-5,x2=1;(2)x1=-1.5,x2=2【分析】(1)根據(jù)因式分解法即可求解;(2)根據(jù)因式分解法即可求解.【詳解】解:(1)x2+4x-5=0因式分解得,(x+5)(x-1)=0則,x+5=0或者x-1=0∴x1=-5,x2=1(2)x(2x+3)=4x+6提公因式得,x(2x+3)=2(2x+3)移項得,x(2x+3)-2(2x+3)=0則,(2x+3)(x-2)=0∴2x+3=0或者x-2=0∴x1=-1.5,x2=2.【點睛】此題主要考查一元二次方程的求解,解題的關鍵是熟知因式分解法解方程.20、(1)甲的平均成績是8,乙的平均成績是8,(2)推薦甲參加省比賽更合適.理由見解析.【分析】(1)根據(jù)平均數(shù)的計算公式即可得甲、乙兩名運動員的平均成績;(2)根據(jù)方差公式即可求出甲、乙兩名運動員的方差,進而判斷出薦誰參加省比賽更合適.【詳解】(1)甲的平均成績是:(9+8+8+7)÷4=8,乙的平均成績是:(10+6+7+9)÷4=8,(2)甲的方差是:=,乙的方差是:=.所以推薦甲參加省比賽更合適.理由如下:兩人的平均成績相等,說明實力相當;但是甲的四次測試成績的方差比乙小,說明甲發(fā)揮較為穩(wěn)定,故推薦甲參加省比賽更合適.【點睛】本題考查了方差、算術(shù)平均數(shù),解決本題的關鍵是掌握方差、算術(shù)平均數(shù)的計算公式.21、1【分析】先計算特殊的三角函數(shù)值和去絕對值,再從左至右計算即可.【詳解】解:原式=【點睛】本題考查的是實數(shù)與特殊角的三角函數(shù)值的混合運算,能夠熟知特殊角的三角函數(shù)值是解題的關鍵.22、(1)如圖①點C即為所求作的點;見解析;(2)如圖②,點D即為所求作的點,見解析.【分析】(1)在圖①中找到兩個格點C,使∠BAC是銳角,且tan∠BAC=;(2)在圖②中找到兩個格點D,使∠ADB是銳角,且tan∠ADB=1.【詳解】解:(1)如圖①點C即為所求作的點;(2)如圖②,點D即為所求作的點.【點睛】本題考查了作圖——應用與設計作圖,解直角三角形.解決本題的關鍵是準確畫圖.23、;.【分析】原式括號中兩項通分并利用同分母分式的減法法則計算,現(xiàn)時利用除法法則變形,約分得到最簡結(jié)果,再把x的值代入計算即可.【詳解】===;當時,原式=.【點睛】此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關鍵.24、(1)直線AB的解析式為,反比例函數(shù)的解析式為;(2)∠ACO=30°;(3)當為60°時,OC'⊥AB,AB'=1.【分析】(1)設直線AB的解析式為y=kx+b(k≠0),將A與B坐標代入求出k與b的值,確定出直線AB的解析式,將D坐標代入直線AB解析式中求出n的值,確定出D的坐標,將D坐標代入反比例解析式中求出m的值,即可確定出反比例解析式;(2)聯(lián)立兩函數(shù)解析式求出C坐標,過C作CH垂直于x軸,在直角三角形OCH中,由OH與HC的長求出tan∠COH的值,利用特殊角的三角函數(shù)值求出∠COH的度數(shù),在三角形AOB中,由OA與OB的長求出tan∠ABO的值,進而求出∠ABO的度數(shù),由∠ABO-∠COH即可求出∠ACO的度數(shù);(3)過點B1作B′G⊥x軸于點G,先求得∠OCB=30°,進而求得α=∠COC′=60°,根據(jù)旋轉(zhuǎn)的性質(zhì),得出∠BOB′=α=60°,解直角三角形求得B′的坐標,然后根據(jù)勾股定理即可求得AB′的長.【詳解】解:(1)設直線AB的解析式為y=kx+b(k≠0),將A(0,1),B(-1,0)代入得:解得,故直線AB解析式為y=x+1,將D(2,n)代入直線AB解析式得:n=2+1=6,則D(2,6),將D坐標代入中,得:m=12,則反比例解析式為;(2)聯(lián)立兩函數(shù)解析式得:解得解得:或,則C坐標為(-6,-2),過點C作CH⊥x軸于點H,在Rt△OHC中,CH=,OH=3,∵tan∠COH=,∴∠COH=30°,∵tan∠ABO=,∴∠ABO=60°,∴∠/r/

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論