2023屆九江市重點中學數(shù)學九年級上冊期末考試試題含解析_第1頁
2023屆九江市重點中學數(shù)學九年級上冊期末考試試題含解析_第2頁
2023屆九江市重點中學數(shù)學九年級上冊期末考試試題含解析_第3頁
2023屆九江市重點中學數(shù)學九年級上冊期末考試試題含解析_第4頁
2023屆九江市重點中學數(shù)學九年級上冊期末考試試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.若一組數(shù)據(jù)為3,5,4,5,6,則這組數(shù)據(jù)的眾數(shù)是()A.3 B.4 C.5 D.62.若點在反比例函數(shù)的圖象上,且,則下列各式正確的是()A. B. C. D.3.設,下列變形正確的是()A. B. C. D.4.如圖,P、Q是⊙O的直徑AB上的兩點,P在OA上,Q在OB上,PC⊥AB交⊙O于C,QD⊥AB交⊙O于D,弦CD交AB于點E,若AB=20,PC=OQ=6,則OE的長為()A.1 B.1.5 C.2 D.2.55.如圖,過反比例函數(shù)的圖像上一點A作AB⊥軸于點B,連接AO,若S△AOB=2,則的值為()A.2 B.3 C.4 D.56.如圖,△∽△,若,,,則的長是()A.2 B.3 C.4 D.57.若,則下列各式一定成立的是()A. B. C. D.8.如圖,矩形草坪ABCD中,AD=10m,AB=m.現(xiàn)需要修一條由兩個扇環(huán)構(gòu)成的便道HEFG,扇環(huán)的圓心分別是B,D.若便道的寬為1m,則這條便道的面積大約是()(精確到0.1m2)A.9.5m2 B.10.0m2 C.10.5m2 D.11.0m29.在一個不透明的盒子中裝有a個除顏色外完全相同的球,這a個球中只有4個紅球.若每次將球充分攪勻后,任意摸出1個球記下顏色再放回盒子.通過大量重復試驗后,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在20%左右,則a的值大約為()A.16 B.20 C.24 D.2810.在△ABC中,∠C=90°,則下列等式成立的是()A.sinA= B.sinA= C.sinA= D.sinA=11.下列函數(shù)中,變量是的反比例函數(shù)是()A. B. C. D.12.某班學生做“用頻率估計概率”的實驗時,給出的某一結(jié)果出現(xiàn)的頻率折線圖,則符合這一結(jié)果的實驗可能是()A.拋一枚硬幣,出現(xiàn)正面朝上B.從標有1,2,3,4,5,6的六張卡片中任抽一張,出現(xiàn)偶數(shù)C.從一個裝有6個紅球和3個黑球的袋子中任取一球,取到的是黑球D.一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃二、填空題(每題4分,共24分)13.如圖,矩形中,邊長,兩條對角線相交所成的銳角為,是邊的中點,是對角線上的一個動點,則的最小值是_______.14.如圖,拋物線y=﹣2x2+2與x軸交于點A、B,其頂點為E.把這條拋物線在x軸及其上方的部分記為C1,將C1向右平移得到C2,C2與x軸交于點B、D,C2的頂點為F,連結(jié)EF.則圖中陰影部分圖形的面積為______.15.在中,,,則______.16.如圖,點在雙曲線()上,過點作軸,垂足為點,分別以點和點為圓心,大于的長為半徑作弧,兩弧相交于,兩點,作直線交軸于點,交軸于點,連接.若,則的值為______.17.在中,,,,則的值是__________.18.圓內(nèi)接正六邊形的邊長為6,則該正六邊形的邊心距為_____.三、解答題(共78分)19.(8分)閱讀下列材料,完成相應的學習任務:如圖(1)在線段AB上找一點C,C把AB分為AC和BC兩條線段,其中AC>BC.若AC,BC,AB滿足關系AC2=BC?AB.則點C叫做線段AB的黃金分割點,這時=≈0.618,人們把叫做黃金分割數(shù),我們可以根據(jù)圖(2)所示操作方法我到線段AB的黃金分割點,操作步驟和部分證明過程如下:第一步,以AB為邊作正方形ABCD.第二步,以AD為直徑作⊙F.第三步,連接BF與⊙F交于點G.第四步,連接DG并延長與AB交于點E,則E就是線段AB的黃金分割點.證明:連接AG并延長,與BC交于點M.∵AD為⊙F的直徑,∴∠AGD=90°,∵F為AD的中點,∴DF=FG=AF,∴∠3=∠4,∠5=∠6,∵∠2+∠5=90°,∠5+∠4=90°,∴∠2=∠4=∠3=∠1,∵∠EBG=∠GBA,∴△EBG∽△GBA,∴=,∴BG2=BE?AB…任務:(1)請根據(jù)上面操作步驟與部分證明過程,將剩余的證明過程補充完整;(提示:證明BM=BG=AE)(2)優(yōu)選法是一種具有廣泛應用價值的數(shù)學方法,優(yōu)選法中有一種0.618法應用了黃金分割數(shù).為優(yōu)選法的普及作出重要貢獻的我國數(shù)學家是(填出下列選項的字母代號)A.華羅庚B.陳景潤C.蘇步青20.(8分)如圖,在平行四邊形ABCD中,AB<BC.(1)利用尺規(guī)作圖,在BC邊上確定點E,使點E到邊AB,AD的距離相等(不寫作法,保留作圖痕跡);(2)若BC=8,CD=5,則CE=.21.(8分)在一個三角形中,如果有一邊上的中線等于這條邊的一半,那么就稱這個三角形為“智慧三角形”.(1)如圖1,已知、是⊙上兩點,請在圓上畫出滿足條件的點,使為“智慧三角形”,并說明理由;(2)如圖2,是等邊三角形,,以點為圓心,的半徑為1畫圓,為邊上的一動點,過點作的一條切線,切點為,求的最小值;(3)如圖3,在平面直角坐標系中,⊙的半徑為1,點是直線上的一點,若在⊙上存在一點,使得為“智慧三角形”,當其面積取得最小值時,求出此時點的坐標.22.(10分)如圖,一次函數(shù)與反比例函數(shù)的圖象交于點和,與y軸交于點C.(1)=,=;(2)根據(jù)函數(shù)圖象可知,當>時,x的取值范圍是;(3)過點A作AD⊥x軸于點D,點P是反比例函數(shù)在第一象限的圖象上一點.設直線OP與線段AD交于點E,當:=3:1時,求點P的坐標.23.(10分)如圖,在等腰直角△ABC中,∠ACB=90°,AC=BC=;(1)作⊙O,使它過點A、B、C(要求尺規(guī)作圖保留作圖痕跡);(2)在(1)所作的圓中,求圓心角∠BOC的度數(shù)和該圓的半徑24.(10分)如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點P在⊙O上,弦PB與CD交于點F,且FC=FB.(1)求證:PD∥CB;(2)若AB=26,EB=8,求CD的長度.25.(12分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,DE交AC于點E,且∠A=∠ADE.(1)求證:DE是⊙O的切線;(2)若AD=16,DE=10,求BC的長.26.小王、小張和小梅打算各自隨機選擇本周六的上午或下午去高郵湖的湖上花海去踏青郊游.(1)小王和小張都在本周六上午去踏青郊游的概率為_______;(2)求他們?nèi)嗽谕粋€半天去踏青郊游的概率.

參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)眾數(shù)的定義即可求解.【詳解】一組數(shù)據(jù)為3,5,4,5,6中,5出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為5;

故選:C.【點睛】本題考查了眾數(shù)的概念,眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),注意一組數(shù)據(jù)的眾數(shù)可能不只一個.2、C【分析】先判斷反比例函數(shù)所在象限,再根據(jù)反比例函數(shù)的性質(zhì)解答即可.【詳解】解:反比例函數(shù)為,函數(shù)圖象在第二、四象限,在每個象限內(nèi),隨著的增大而增大,又,,,.故選C.【點睛】本題考查了反比例函數(shù)的圖象和性質(zhì),屬于基本題型,熟練掌握反比例函數(shù)的性質(zhì)是解答的關鍵.3、D【分析】根據(jù)比例的性質(zhì)逐個判斷即可.【詳解】解:由得,2a=3b,A、∵,∴2b=3a,故本選項不符合題意;

B、∵,∴3a=2b,故本選項不符合題意;

C、,故本選項不符合題意;

D、,故本選項符合題意;

故選:D.【點睛】本題考查了比例的性質(zhì),能熟記比例的性質(zhì)是解此題的關鍵,如果,那么ad=bc.4、C【分析】因為OCP和ODQ為直角三角形,根據(jù)勾股定理可得OP、DQ、PQ的長度,又因為CPDQ,兩直線平行內(nèi)錯角相等,∠PCE=∠EDQ,且∠CPE=∠DQE=90°,可證CPE∽DQE,可得,設PE=x,則EQ=14-x,解得x的取值,OE=OP-PE,則OE的長度可得.【詳解】解:∵在⊙O中,直徑AB=20,即半徑OC=OD=10,其中CPAB,QDAB,∴OCP和ODQ為直角三角形,根據(jù)勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CPAB,QDAB,垂直于用一直線的兩直線相互平行,∴CPDQ,且C、D連線交AB于點E,∴∠PCE=∠EDQ,(兩直線平行,內(nèi)錯角相等)且∠CPE=∠DQE=90°,∴CPE∽DQE,故,設PE=x,則EQ=14-x,∴,解得x=6,∴OE=OP-PE=8-6=2,故選:C.【點睛】本題考察了勾股定理、相似三角形的應用、兩直線平行的性質(zhì)、圓的半徑,解題的關鍵在于證明CPE與DQE相似,并得出線段的比例關系.5、C【解析】試題分析:觀察圖象可得,k>0,已知S△AOB=2,根據(jù)反比例函數(shù)k的幾何意義可得k=4,故答案選C.考點:反比例函數(shù)k的幾何意義.6、C【分析】根據(jù)相似三角形的性質(zhì),列出對應邊的比,再根據(jù)已知條件即可快速作答.【詳解】解:∵△∽△∴∴解得:AB=4故答案為C.【點睛】本題主要考查了相似三角形的性質(zhì),解題的關鍵是找對相似三角形的對應邊,并列出比例進行求解.7、B【分析】由等式的兩邊都除以,從而可得到答案.【詳解】解:等式的兩邊都除以:,故選B.【點睛】本題考查的是把等積式化為比例式的方法,考查的是比的基本性質(zhì),等式的基本性質(zhì),掌握以上知識是解題的關鍵.8、C【分析】由四邊形ABCD為矩形得到△ADB為直角三角形,又由AD=10,AB=10,由此利用勾股定理求出BD=20,又由cos∠ADB=,得到∠ADB=60°,又矩形對角線互相平分且相等,便道的寬為1m,所以每個扇環(huán)都是圓心角為30°且外環(huán)半徑為10.1,內(nèi)環(huán)半徑為9.1.這樣可以求出每個扇環(huán)的面積.【詳解】∵四邊形ABCD為矩形,∴△ADB為直角三角形,又∵AD=10,AB=,∴BD=,又∵cos∠ADB=,∴∠ADB=60°.又矩形對角線互相平分且相等,便道的寬為1m,所以每個扇環(huán)都是圓心角為30°,且外環(huán)半徑為10.1,內(nèi)環(huán)半徑為9.1.∴每個扇環(huán)的面積為.∴當π取3.14時整條便道面積為×2=10.4666≈10.1m2.便道面積約為10.1m2.故選:C.【點睛】此題考查內(nèi)容比較多,有勾股定理、三角函數(shù)、扇形面積,做題的關鍵是把實際問題轉(zhuǎn)化為數(shù)學問題.9、B【分析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,列出方程求解.【詳解】根據(jù)題意知=20%,解得a=20,經(jīng)檢驗:a=20是原分式方程的解,故選B.【點睛】本題考查利用頻率估計概率.大量反復試驗下頻率穩(wěn)定值即概率.關鍵是根據(jù)紅球的頻率得到相應的等量關系.10、B【解析】分析:根據(jù)題意畫出圖形,進而分析得出答案.詳解:如圖所示:sinA=.故選B.點睛:本題主要考查了銳角三角函數(shù)的定義,正確記憶邊角關系是解題的關鍵.11、B【解析】根據(jù)反比例函數(shù)的一般形式即可判斷.【詳解】A.不符合反比例函數(shù)的一般形式的形式,選項錯誤;B.符合反比例函數(shù)的一般形式的形式,選項正確;C.不符合反比例函數(shù)的一般形式的形式,選項錯誤;D.不符合反比例函數(shù)的一般形式的形式,選項錯誤.故選B.【點睛】本題考查了反比例函數(shù)的定義,熟練掌握反比例函數(shù)的一般形式是解題的關鍵.12、C【分析】根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.33附近波動,即其概率P≈0.33,計算四個選項的頻率,約為0.33者即為正確答案.【詳解】解:A、拋一枚硬幣,出現(xiàn)正面朝上的頻率是=0.5,故本選項錯誤;B、從標有1,2,3,4,5,6的六張卡片中任抽一張,出現(xiàn)偶數(shù)頻率約為:==0.5,故本選項錯誤;C、從一個裝有6個紅球和3個黑球的袋子中任取一球,取到的是黑球概率是=≈0.33,故本選項正確;D、一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃的概率是=0.25,故本選項錯誤;故選:C.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.同時此題在解答中要用到概率公式.二、填空題(每題4分,共24分)13、【分析】根據(jù)對稱性,作點B關于AC的對稱點B′,連接B′M與AC的交點即為所求作的點P,再求直角三角形中30的臨邊即可.【詳解】如圖,作點B關于AC的對稱點B′,連接B′M,交AC于點P,∴PB′=PB,此時PB+PM最小,∵矩形ABCD中,兩條對角線相交所成的銳角為60,∴△ABP是等邊三角形,∴∠ABP=60,∴∠B′=∠B′BP=30,∵∠DBC=30,∴∠BMB′=90,在Rt△BB′M中,BM=4,∠B′=30°,∴BB’=2BM=8∴B′M=,∴PM+PB′=PM+PB=B′M=4.故答案為4.【點睛】本題主要考查了最短路線問題,解決本題的關鍵是作點B關于AC的對稱點B′.14、1【分析】由S陰影部分圖形=S四邊形BDFE=BD×OE,即可求解.【詳解】令y=0,則:x=±1,令x=0,則y=2,則:OB=1,BD=2,OB=2,S陰影部分圖形=S四邊形BDFE=BD×OE=2×2=1.故:答案為1.【點睛】本題考查的是拋物線性質(zhì)的綜合運用,確定S陰影部分圖形=S四邊形BDFE是本題的關鍵.15、【分析】根據(jù)題意畫出圖形,進而得出cosB=求出即可.【詳解】解:∵∠A=90°,AB=3,BC=4,

則cosB==.

故答案為:.【點睛】本題考查了銳角三角函數(shù)的定義,正確把握銳角三角函數(shù)關系是解題的關鍵.16、【分析】設OA交CF于K.利用面積法求出OA的長,再利用相似三角形的性質(zhì)求出AB、OB即可解決問題;【詳解】解:如圖,設OA交CF于K.由作圖可知,CF垂直平分線段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF=,∴AK=OK=,∴OA=,∵∠AOB+∠AOF=90°,∠CFO+∠AOF=90°,∴∠AOB=∠CFO,又∵∠ABO=∠COF,∴△FOC∽△OBA,∴,∴,∴OB=,AB=,∴A(,),∴k=×=.故答案為:.【點睛】本題考查了尺規(guī)作圖-作線段的垂直平分線,線段垂直平分線的性質(zhì),反比例函數(shù)圖象上的點的坐標特征,勾股定理,相似三角形的判定與性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.17、【分析】直接利用正弦的定義求解即可.【詳解】解:如下圖,在中,故答案為:.【點睛】本題考查的知識點是正弦的定義,熟記定義內(nèi)容是解此題的關鍵.18、3【分析】根據(jù)題意畫出圖形,利用等邊三角形的性質(zhì)及銳角三角函數(shù)的定義直接計算即可.【詳解】如圖所示,連接OB、OC,過O作OG⊥BC于G.∵此多邊形是正六邊形,∴△OBC是等邊三角形,∴∠OBG=60°,∴邊心距OG=OB?sin∠OBG=6(cm).故答案為:.【點睛】本題考查了正多邊形與圓、銳角三角函數(shù)的定義及特殊角的三角函數(shù)值,熟知正六邊形的性質(zhì)是解答本題的關鍵.三、解答題(共78分)19、(1)見解析;(2)A【分析】(1)利用相全等三角形的判定和性質(zhì)、相似三角形的性質(zhì)以及平行線的性質(zhì)證明BM=BG=AE即可解決問題.

(2)為優(yōu)選法的普及作出重要貢獻的我國數(shù)學家是華羅庚.【詳解】(1)補充證明:∵∠2=∠4,∠ABM=∠DAE,AB=AD,∴△ABM≌△DAE(ASA),∴BM=AE,∵AD∥BC,∴∠7=∠5=∠6=∠8,∴BM=BG=AE,∴AE2=BE?AB,∴點E是線段AB的黃金分割點.(2)優(yōu)選法是一種具有廣泛應用價值的數(shù)學方法,優(yōu)選法中有一種0.618法應用了黃金分割數(shù).為優(yōu)選法的普及作出重要貢獻的我國數(shù)學家是華羅庚.故答案為A.【點睛】本題考查作圖-相似變換,全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),平行線的性質(zhì),正方形的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考創(chuàng)新題型.20、(1)見解析;(2)1.【分析】根據(jù)角平分線上的點到角的兩邊距離相等知作出∠A的平分線即可;根據(jù)平行四邊形的性質(zhì)可知AB=CD=5,AD∥BC,再根據(jù)角平分線的性質(zhì)和平行線的性質(zhì)得到∠BAE=∠BEA,再根據(jù)等腰三角形的性質(zhì)和線段的和差關系即可求解.【詳解】(1)如圖所示:E點即為所求.(2)∵四邊形ABCD是平行四邊形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分線,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=1.考點:作圖—復雜作圖;平行四邊形的性質(zhì)21、(1)見解析;(2);(1)或【分析】(1)連接AO并且延長交圓于,連接AO并且延長交圓于,即可求解;

(2)根據(jù)MN為⊙的切線,應用勾股定理得,所以OM最小時,MN最?。桓鶕?jù)垂線段最短,得到當M和BC中點重合時,OM最小為,此時根據(jù)勾股定理求解DE,DE和MN重合,即為所求;

(1)根據(jù)“智慧三角形”的定義可得為直角三角形,根據(jù)題意可得一條直角邊為1,當寫斜邊最短時,另一條直角邊最短,則面積取得最小值,由垂線段最短可得斜邊最短為1,根據(jù)勾股定理可求得另一條直角邊,再根據(jù)三角形面積可求得斜邊的高,即點P的橫坐標,再根據(jù)勾股定理可求點P的縱坐標,從而求解.【詳解】(1)如圖1,點和均為所求理由:連接、并延長,分別交于點、,連接、,∵是的直徑,∴,∴是“智慧三角形”同理可得,也是“智慧三角形”(2)∵是的切線,∴,∴,∴當最小時,最小,即當時,取得最小值,如圖2,作于點,過點作的一條切線,切點為,連接,∵是等邊三角形,,∴,,∴,∵是的一條切線,∴,,∴,當點與重合時,與重合,此時.(1)由“智慧三角形”的定義可得為直角三角形,根據(jù)題意,得一條直角邊.∴當最小時,的面積最小,即最小時.如圖1,由垂線段最短,可得的最小值為1.∴.過作軸,∵,∴.在中,,故符合要求的點坐標為或.【點睛】本題考查了圓與勾股定理的綜合應用,掌握圓的相關知識,熟練應用勾股定理,明確“智慧三角形”的定義是解題的關鍵.22、(1),16;(2)-8<x<0或x>4;(3)點P的坐標為().【分析】(1)將點B代入y1=k1x+2和y2=,可求出k1=k2=16.(2)由圖象知,-8<x<0和x>4(3)先求出四邊形ODAC的面積,從而求出DE的長,然后得出點E的坐標,最后求出直線OP的解析式即可得出點P的坐標.【詳解】解:(1)把B(-8,-2)代入y1=k1x+2得-8k1+2=-2,解得k1=∴一次函數(shù)解析式為y1=x+2;把B(-8,-2)代入得k2=-8×(-2)=16,

∴反比例函數(shù)解析式為故答案為:,16;(2)∵當y1>y2時即直線在反比例函數(shù)圖象的上方時對應的x的取值范圍,

∴-8<x<0或x>4;

故答案為:-8<x<0或x>4;(3)由(1)知y1=x+2,y2=,∴m=4,點C的坐標是(0,2),點A的坐標是(4,4),∴CO=2,AD=OD=4,∴S梯形ODAC=·OD=×4=12.∵S梯形ODAC∶S△ODE=3∶1,∴S△ODE=×S梯形ODAC=×12=4,即OD·DE=4,∴DE=2,∴點E的坐標為(4,2).又∵點E在直線OP上,∴直線OP的解析式是y=x,∴直線OP與反比例函數(shù)y2=的圖象在第一象限內(nèi)的交點P的坐標為(4,2).【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式,三角形、梯形的面積,根據(jù)圖象找出自變量的取值范圍.在解題時要綜合應用反比例函數(shù)的圖象和性質(zhì)以及求一次函數(shù)與反比例函數(shù)交點坐標是本題的關鍵.23、(1)見解析;(2)∠BOC=90°,該圓的半徑為1【分析】(1)作出AC的垂直平分線,交AB于點O,然后以點O為圓心、以OA為半徑作圓即可;(2)根據(jù)等腰直角三角形的性質(zhì)和圓周角定理即可求出∠BOC,根據(jù)圓周角定理的推論可得AB是⊙O的直徑,然后根據(jù)勾股定理求出AB即得結(jié)果.【詳解】解:(1)如圖所示,⊙O即為所求;(2)∵∠ACB=90°,AC=BC=,∴∠A=∠B=45°,,∴∠BOC=2∠A=90°,∵∠ACB=90°,∴AB是⊙O的直徑,∴⊙O的半徑=AB=1.【點睛】本題考查了尺規(guī)作三角形的外接圓、等腰直角三角形的性質(zhì)、勾股定理、圓周角定理及其推論等知識,屬于基礎題目,熟練掌握上述知識是解題的關鍵.24、(1)證明見解析;(2)CD=1.【解析】(1)欲證明PD∥BC,只要證明∠P=∠CBF即可;(2)由△ACE∽△CBE,可得,求出EC,再根據(jù)垂徑定理即可解決問題.【詳解】(1)證明:∵FC=FB,∴∠C=∠CBF,∵∠P=∠C,∴∠P=∠CBF,∴PD∥BC.(2)連接AC,∵AB是直徑,∴∠ACB=90°,∵AB⊥CD,∴CE=ED,∠AEC=∠CEB=90°,∵∠CAE+∠ACE=90°,∠ACE+∠BCE=90°,∴∠CAE=∠BCE,∴△ACE∽△CBE,∴,∴,∴EC2=144,∵EC>0,∴EC=12,∴CD=2EC=1.【點睛】本題考查圓周角定理,垂徑定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論