![ArchitectureandEquilibra結(jié)構(gòu)和平衡劉瑞華羅雪梅導師曾_第1頁](http://file4.renrendoc.com/view/f4707516dafcbfc737ac62874dba63a7/f4707516dafcbfc737ac62874dba63a71.gif)
![ArchitectureandEquilibra結(jié)構(gòu)和平衡劉瑞華羅雪梅導師曾_第2頁](http://file4.renrendoc.com/view/f4707516dafcbfc737ac62874dba63a7/f4707516dafcbfc737ac62874dba63a72.gif)
![ArchitectureandEquilibra結(jié)構(gòu)和平衡劉瑞華羅雪梅導師曾_第3頁](http://file4.renrendoc.com/view/f4707516dafcbfc737ac62874dba63a7/f4707516dafcbfc737ac62874dba63a73.gif)
![ArchitectureandEquilibra結(jié)構(gòu)和平衡劉瑞華羅雪梅導師曾_第4頁](http://file4.renrendoc.com/view/f4707516dafcbfc737ac62874dba63a7/f4707516dafcbfc737ac62874dba63a74.gif)
![ArchitectureandEquilibra結(jié)構(gòu)和平衡劉瑞華羅雪梅導師曾_第5頁](http://file4.renrendoc.com/view/f4707516dafcbfc737ac62874dba63a7/f4707516dafcbfc737ac62874dba63a75.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
ArchitectureandEquilibra
結(jié)構(gòu)和平衡
劉瑞華羅雪梅
導師:曾平Chapter6
2004.11.101Chapter6ArchitectureandEquilibriaPerface
lyaoynovstabletheorem2004.11.102Chapter6ArchitectureandEquilibria
6.1NeutralNetworkAsStochasticGradientsystemClassifyNeutralnetworkmodelBytheirsynapticconnectiontopolgiesandbyhowlearningmodifiestheirconnectiontopologies
synapticconnectiontopolgieshowlearningmodifiestheirconnectiontopologies2004.11.103Chapter6ArchitectureandEquilibria
6.1NeutralNetworkAsStochasticGradientsystem2004.11.104Chapter6ArchitectureandEquilibria
6.1NeutralNetworkAsStochasticGradientsystemThreestochasticgradientsystemsrepresentthethreemaincategories:1)Feedforwardsupervisedneuralnetworkstrainedwiththebackpropagation(BP)algorithm.2)Feedforwardunsupervisedcompetitivelearningoradaptivevectorquantization(AVQ)networks.3)Feedbackunsupervisedrandomadaptivebidirectionalassociativememory(RABAM)networks.2004.11.105Chapter6ArchitectureandEquilibria
6.2GlobalEquilibra:convergenceandstabilityNeuralnetwork:synapses,neuronsthreedynamicalsystems:synapsesdynamicalsystems
neuonsdynamicalsystemsjointsynapses-neuronsdynamicalsystemsHistorically,Neuralengineersstudythefirstorsecondneuralnetwork.Theyusuallystudylearningin
feedforwardneuralnetworksandneuralstabilityinnonadaptivefeedbackneuralnetworks.RABAMandARTnetworkdependonjointequilibrationofthesynapticandneuronaldynamicalsystems.2004.11.106Chapter6ArchitectureandEquilibria
6.2GlobalEquilibra:convergenceandstabilityEquilibriumissteadystate.Convergenceissynapticequilibrium.Stabilityisneuronalequilibrium.Moregenerallyneuralsignalsreachsteadystateeventhoughtheactivationsstillchange.WedenotesteadystateintheneuronalfieldNeuronfluctuatefasterthansynapsesfluctuate.Stability-Convergencedilemma:Thesynapsedslowlyencodetheseneuralpatternsbeinglearned;butwhenthesynapsedchange,thistendstoundothestableneuronalpatterns.2004.11.107Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsWeshallprovethat:CompetitveAVQsynapticvectorconvergetopattern-classcentroid.TheyvibrateaboutthecentroidinaBrowmianmotionCompetitvelearningadpatively
qunatizestheinputpatternspace
charcaterizesthecontinuousdistributionsofpattern.2004.11.108Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsTheRandomIndicatorfunction
Supervisedlearningalgorithmsdependexplicitlyontheindicatorfunctions.Unsupervisedlearningalgorthmsdon’trequirethispattern-classinformation.Centriod
ComptetiveAVQStochasticDifferentialEquations2004.11.109Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsTheStochasticunsupervisedcompetitivelearninglaw:WewanttoshowthatatequilibriumWeassumeTheequilibriumandconvergencedependonapproximation(6-11),so6-10reduces:2004.11.1010Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsCompetitiveAVQAlgorithms1.Initializesynapticvectors:2.Forrandomsample,findthecloset(“winning”)synapticvector3.UpdatethewiningsynapticvectorsbytheUCL,SCL,orDCLlearningalgorithm.2004.11.1011Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsUnsupervisedCompetitiveLearning(UCL)definesaslowlydeceasingsequenceoflearningcoefficientSupervisedCompetitiveLearning(SCL)2004.11.1012Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsDifferentialCompetitiveLearning(DCL)denotesthetimechangeofthejthneuron’scompetitivesignal.Inpracticeweonlyusethesignof(6-20)StochasticEquilibriumandConvergenceCompetitivesynapticvectorcovergetodecsion-classcentrols.Maycovergetolocallymaxima.2004.11.1013Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithmsAVQcentroidtheorem:ifacompetitiveAVQsystemconverges,itconvergetothecentroidofthesampleddecisionclass.Proof.SupposethejthneuroninFywinstheactitvecompetition.SupposethejthsynapticvectorcodesfordecisionclassSupposethesynapticvectorhasreachedequilibrium2004.11.1014Chapter6ArchitectureandEquilibria
6.3Synapticconvergencetocentroids:AVQAlgorithms2004.11.1015Chapter6ArchitectureandEquilibria
6.4AVQConvergenceTheoremAVQConvergenceTheorem:Stochasticcompetitivelearningsystemsareasymptoticallystable,andsynapticvectorsconvergetocentroids.Competitivesynapticvectorsconvergeexponentiallyquiklytopattern-classcentroids.Proof.ConsidertherandomquadraticformLThepatternvectorsxdonotchangeintime.2004.11.1016Chapter6ArchitectureandEquilibria
6.4AVQConvergenceTheoremTheaverageE[L]asLyapunovfunctionforthesochastic
competiticedynamicalsystem.Assume:Noiseprocessiszero-meanandindependenceofthenoiseprocesswith“signal”process2004.11.1017Chapter6ArchitectureandEquilibria
6.4AVQConvergenceTheoremSo,onaveragebythelearninglaw6-12,Ifanysynapticvectormovealongitstrajetory.So,thecompetitiveAVQsystemisasymtotically
stabel,andingereralconvergesexponentiallyquicklytoalocallyequilibrium.Suppose
TheneverysynapticvectorhasReachedequilibriumandisconstant.2004.11.1018Chapter6ArchitectureandEquilibria
6.4AVQConvergenceTheoremSincep(x)isanonnegativeweigthfunction.Theweightedintegralofthelearningdifferencemustequalzero:Soequilibriumsynapticvectorequalcentroids.Q.E.D2004.11.1019Chapter6ArchitectureandEquilibria
6.5GlobalstabilityoffeedbackneuralnetworksGlobalstabilityisjointlyneuronal-synapticssteadystate.Globalstabilitytheoremsarepowerfulbutlimited.Theirpower:theirdimensionindependencenonlineargeneralitytheirexponentiallyfastconvergencetofixedpoints.Theirlimitation:donottelluswheretheequilibriaoccurinthestatespace.2004.11.1020Chapter6ArchitectureandEquilibra
6.5GlobalstabilityoffeedbackneuralnetworksStability-ConvergenceDilemmaStability-ConvergenceDilemmaarisefromtheasymmetryinneounalandsynapticfluctuationrates.Neuronschangefasterthansynapseschange.Neuronsfluctuateatthemillisecondlevel.Synapsesfluctuateatthesecondorevenminutelevel.Thefast-changingneuronsmustbalancetheslow-changingsynapses.2004.11.1021Chapter6ArchitectureandEquilibria
6.5GlobalstabilityoffeedbackneuralnetworksStability-ConvergenceDilemma1.Asymmetry:NeuronsinandfluctuatefasterthanthesynapsesinM.2.stability:(patternformation).3.Learning:4.Undoing:theABAMtheoremoffersageneralsolutiontostability-convergencedilemma.2004.11.1022Chapter6ArchitectureandEquilibria
6.6TheABAMTheoremTheABAMTheorem(Adaptive
bidirectionalassociativememory)TheHebbianABAMandcompetitiveABAMmodelsaregloballystabel.HebbianABAMmodel:CompetitiveABAMmodel,replacing6-35with6-362004.11.1023Chapter6ArchitectureandEquilibria
6.6TheABAMTheoremIfthepositivityassumptionsThen,themodelsareasymptoticallystable,andthesquaredactivationandsynapticvelocitiesdecreaseexponentiallyquicklytotheirequilibriumvalues:Proof.
theproofusestheboundedlyapunovfunction
L2004.11.1024Chapter6ArchitectureandEquilibria
6.6TheABAMTheoremMakethedifferenceto6-37:2004.11.1025Chapter6ArchitectureandEquilibria
6.6TheABAMTheoremToproveglobalstabilityforthecompetitvelearninglaw6-36WeprovethestrongerasymptoticstableoftheABAMmodelswiththepositivityassumptions.2004.11.1026Chapter6ArchitectureandEquilibria
6.6TheABAMTheoremAlongtrajectoriesforanynonzerochangeinanyneuronalactivationoranysynapse.Trajectoriesendinequilibriumpoints.Indeed6-43implies:Thesquaredvelocitiesdeceaseexponentiallyquicklybecauseofthestrictnegativityof(6-43)and,toruleoutpathologies.Q.E.D2004.11.1027Chapter6ArchitectureandEquilibria
6.7structuralstabilityofunsuppervisedlearningandRABAMIsunsupervisedlearningstructuralstability?StructuralstabilityisinsensivitytosmallperturbationsStructuralstabilityignoresmanysmallperturbations.Suchperturbationspreservequalitativeproperties.Basinsofattractionsmaintaintheirbasicshape.2004.11.1028Chapter6ArchitectureandEquilibria
6.7StructuralstabilityofunsuppervisedlearningandRABAMRandomAdaptiveBidirectionalAssociativeMemoriesRABAMBrowiandiffusionsperturbRABAMmodel.Thedifferentialequationsin6-33through6-35nowbecomestochasticdifferentialequations,withrandomprocessesassolutions.ThediffusionsignalhebbianlawRABAMmodel:2004.11.1029Chapter6ArchitectureandEquilibria
6.7StructuralstabilityofunsuppervisedlearningandRABAMWiththestochasticcompetitiveslaw:2004.11.1030Chapter6ArchitectureandEquilibria
6.7Structuralstabilityofunsuppervise
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房地產(chǎn)中介加盟合同模板
- 鋼材銷售運輸合同范本
- 辦學合同協(xié)議
- 針對個人自行采購合同模板
- 農(nóng)機買賣合同協(xié)議書樣本
- 項目承包合同協(xié)議書
- 口譯翻譯合同-純?nèi)斯しg
- 醫(yī)療器械三方合作合同協(xié)議書范本
- 進口貨物運輸預約保險合同
- 水電材料購銷簡單合同范本
- 九年級上冊-備戰(zhàn)2024年中考歷史總復習核心考點與重難點練習(統(tǒng)部編版)
- 健康指南如何正確護理蠶豆病學會這些技巧保持身體健康
- 老客戶的開發(fā)與技巧課件
- 2024建設工程人工材料設備機械數(shù)據(jù)分類和編碼規(guī)范
- 26個英文字母書寫(手寫體)Word版
- GB/T 13813-2023煤礦用金屬材料摩擦火花安全性試驗方法和判定規(guī)則
- DB31 SW-Z 017-2021 上海市排水檢測井圖集
- 日語專八分類詞匯
- GB/T 707-1988熱軋槽鋼尺寸、外形、重量及允許偏差
- GB/T 33084-2016大型合金結(jié)構(gòu)鋼鍛件技術(shù)條件
- 高考英語課外積累:Hello,China《你好中國》1-20詞塊摘錄課件
評論
0/150
提交評論