2023屆浙江省杭州市下城區(qū)朝暉中學數(shù)學九年級上冊期末檢測試題含解析_第1頁
2023屆浙江省杭州市下城區(qū)朝暉中學數(shù)學九年級上冊期末檢測試題含解析_第2頁
2023屆浙江省杭州市下城區(qū)朝暉中學數(shù)學九年級上冊期末檢測試題含解析_第3頁
2023屆浙江省杭州市下城區(qū)朝暉中學數(shù)學九年級上冊期末檢測試題含解析_第4頁
2023屆浙江省杭州市下城區(qū)朝暉中學數(shù)學九年級上冊期末檢測試題含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.一枚質(zhì)地勻均的骰子,其六個面上分別標有數(shù)字:1,2,3,4,5,6,投擲一次,朝上面的數(shù)字大于4的概率是()A. B. C. D.2.二次函數(shù)y=﹣x2+2mx(m為常數(shù)),當0≤x≤1時,函數(shù)值y的最大值為4,則m的值是()A.±2 B.2 C.±2.5 D.2.53.已知是一元二次方程的解,則的值為()A.-5 B.5 C.4 D.-44.在△中,∠,如果,,那么cos的值為()A. B.C. D.5.如圖,反比例函數(shù)的大致圖象為()A. B. C. D.6.已知菱形的邊長為,若對角線的長為,則菱形的面積為()A. B. C. D.7.如圖,△ABC內(nèi)接于⊙O,AB=BC,∠ABC=120°,AD為⊙O的直徑,AD=6,那么AB的值為()A.3 B. C. D.28.下列哪個方程是一元二次方程()A.2x+y=1 B.x2+1=2xy C.x2+=3 D.x2=2x﹣39.如圖,在中,,于點D,,,則AD的長是()A.1. B. C.2 D.410.如圖是由6個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體()A.主視圖改變,左視圖改變 B.俯視圖不變,左視圖不變C.俯視圖改變,左視圖改變 D.主視圖改變,左視圖不變二、填空題(每小題3分,共24分)11.如圖,已知∠AOB=30°,在射線OA上取點O1,以點O1為圓心的圓與OB相切;在射線O1A上取點O2,以點O2為圓心,O2O1為半徑的圓與OB相切;在射線O2A上取點O3,以點O3為圓心,O3O2為半徑的圓與OB相切……,若⊙O1的半徑為1,則⊙On的半徑是______________.12.拋物線y=﹣(x+)2﹣3的頂點坐標是_____.13.如圖,△ABC中,AB=6,BC=1.如果動點D以每秒2個單位長度的速度,從點B出發(fā)沿邊BA向點A運動,此時直線DE∥BC,交AC于點E.記x秒時DE的長度為y,寫出y關于x的函數(shù)解析式_____(不用寫自變量取值范圍).14.一組數(shù)據(jù),,,,的眾數(shù)是,則=_________.15.等腰Rt△ABC中,斜邊AB=12,則該三角形的重心與外心之間的距離是_____.16.半徑為4cm,圓心角為60°的扇形的面積為cm1.17.一天早上,王霞從家出發(fā)步行上學,出發(fā)6分鐘后王霞想起數(shù)學作業(yè)沒有帶,王霞立即打電話叫爸爸騎自行車把作業(yè)送來(接打電話和爸爸出門的時間忽略不計),同時王霞把速度降低到前面的一半.爸爸騎自行車追上王霞后立即掉頭以原速趕往位于家的另一邊的單位上班,王霞拿到作業(yè)后立即改為慢跑上學,慢跑的速度是最開始步行速度的2倍,最后王霞比爸爸早10分鐘到達目的地.如圖反映了王霞與爸爸之間的距離(米)與王霞出發(fā)后時間(分鐘)之間的關系,則王霞的家距離學校有__________米.18.如圖在中,,,以點為圓心,的長為半徑作弧,交于點,為的中點,以點為圓心,長為半徑作弧,交于點,若,則陰影部分的面積為________.三、解答題(共66分)19.(10分)如圖,在中,,平分交于點,將繞點順時針旋轉(zhuǎn)到的位置,點在上.(1)旋轉(zhuǎn)的度數(shù)為______;(2)連結(jié),判斷與的位置關系,并說明理由.20.(6分)如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,如果AB=10,CD=8,求線段AE的長.21.(6分)某學校為了增強學生體質(zhì),決定開設以下體育課外活動項目:A:籃球B:乒乓球C:羽毛球D:足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:(1)這次被調(diào)查的學生共有人;(2)請你將條形統(tǒng)計圖(2)補充完整;(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)22.(8分)甲口袋中裝有3個小球,分別標有號碼1,2,3;乙口袋中裝有2個小球,分別標有號碼1,2;這些球除數(shù)字外完全相同.從甲、乙兩口袋中分別隨機地摸出一個小球,則取出的兩個小球上的號碼恰好相同的概率是多少?23.(8分)如圖,在中,,點是中點.連接.作,垂足為,的外接圓交于點,連接.(1)求證:;(2)過點作圓的切線,交于點.若,求的值;(3)在(2)的條件下,當時,求的長.24.(8分)如圖直角坐標系中,為坐標原點,拋物線交軸于點,過作軸,交拋物線于點,連結(jié).點為拋物線上上方的一個點,連結(jié),作垂足為,交于點.(1)求的長;(2)當時,求點的坐標;(3)當面積是四邊形面積的2倍時,求點的坐標.25.(10分)如圖,在平面直角坐標系中,拋物線與軸交于,兩點(點在點的左側(cè)),與軸交于點,對稱軸與軸交于點,點在拋物線上.(1)求直線的解析式.(2)點為直線下方拋物線上的一點,連接,.當?shù)拿娣e最大時,連接,,點是線段的中點,點是線段上的一點,點是線段上的一點,求的最小值.(3)點是線段的中點,將拋物線與軸正方向平移得到新拋物線,經(jīng)過點,的頂點為點,在新拋物線的對稱軸上,是否存在點,使得為等腰三角形?若存在,直接寫出點的坐標;若不存在,請說明理由.26.(10分)已知四邊形ABCD的四個頂點都在⊙O上,對角線AC和BD交于點E.(1)若∠BAD和∠BCD的度數(shù)之比為1:2,求∠BCD的度數(shù);(2)若AB=3,AD=5,∠BAD=60°,點C為劣弧BD的中點,求弦AC的長;(3)若⊙O的半徑為1,AC+BD=3,且AC⊥BD.求線段OE的取值范圍.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】直接得出朝上面的數(shù)字大于4的個數(shù),再利用概率公式求出答案.【詳解】∵一枚質(zhì)地均勻的骰子,其六個面上分別標有數(shù)字1,2,3,4,5,6,投擲一次,∴共有6種情況,其中朝上面的數(shù)字大于4的情況有2種,∴朝上一面的數(shù)字是朝上面的數(shù)字大于4的概率為:,故選:B.【點睛】本題考查簡單的概率求法,概率=所求情況數(shù)與總情況數(shù)的比;熟練掌握概率公式是解題關鍵.2、D【解析】分m≤0、m≥1和0≤m≤1三種情況,根據(jù)y的最大值為4,結(jié)合二次函數(shù)的性質(zhì)求解可得.【詳解】y=﹣x2+2mx=﹣(x﹣m)2+m2(m為常數(shù)),①若m≤0,當x=0時,y=﹣(0﹣m)2+m2=4,m不存在,②若m≥1,當x=1時,y=﹣(1﹣m)2+m2=4,解得:m=2.5;③若0≤m≤1,當x=m時,y=m2=4,即:m2=4,解得:m=2或m=﹣2,∵0≤m≤1,∴m=﹣2或2都舍去,故選:D.【點睛】此題主要考查二次函數(shù)的圖像與性質(zhì),解題的關鍵是根據(jù)題意分三種情況討論.3、B【解析】根據(jù)方程的解的定義,把代入原方程即可.【詳解】把代入得:4-2b+6=0b=5故選:B【點睛】本題考查的是方程的解的定義,理解方程解的定義是關鍵.4、A【分析】先利用勾股定理求出AB的長度,從而可求.【詳解】∵∠,,∴∴故選A【點睛】本題主要考查勾股定理及余弦的定義,掌握余弦的定義是解題的關鍵.5、B【分析】比例系數(shù)k=1>0,根據(jù)反比例函數(shù)圖像的特點可判斷出函數(shù)圖像.【詳解】∵比例系數(shù)k=1>0∴反比例函數(shù)經(jīng)過一、三象限故選:B.【點睛】本題考查反比例函數(shù)圖像的分布,當k>0時,函數(shù)位于一、三象限.當k<0時,函數(shù)位于二、四象限.6、B【分析】先求出對角線AC的長度,再根據(jù)“菱形的面積等于對角線乘積的一半”,即可得出答案.【詳解】根據(jù)題意可得:AB=BC=CD=AD=13cm,BD=10cm∵ABCD為菱形∴BD⊥AC,BO=DO=AO=AC=2AO=24cm∴故答案選擇B.【點睛】本題考查的是菱形,難度適中,需要熟練掌握菱形面積的兩種求法.7、A【詳解】解:∵AB=BC,∴∠BAC=∠C.∵∠ABC=120°,∴∠C=∠BAC=10°.∵∠C和∠D是同圓中同弧所對的圓周角,∴∠D=∠C=10°.∵AD為直徑,∴∠ABD=90°.∵AD=6,∴AB=AD=1.故選A.8、D【分析】方程的兩邊都是整式,只含有一個未知數(shù),并且整理后未知數(shù)的最高次數(shù)都是2,像這樣的方程叫做一元二次方程,根據(jù)定義判斷即可.【詳解】A.2x+y=1是二元一次方程,故不正確;B.x2+1=2xy是二元二次方程,故不正確;C.x2+=3是分式方程,故不正確;D.x2=2x-3是一元二次方程,故正確;故選:D9、D【分析】由在Rt△ABC中,∠ACB=90°,CD⊥AB,根據(jù)同角的余角相等,可得∠ACD=∠B,又由∠CDB=∠ACB=90°,可證得△ACD∽△CBD,然后利用相似三角形的對應邊成比例,即可求得答案.【詳解】∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∴△ACD∽△CBD,∴,∵CD=2,BD=1,∴,∴AD=4.故選D.【點睛】此題考查相似三角形的判定與性質(zhì),解題關鍵在于證得△ACD∽△CBD.10、D【解析】試題分析:將正方體①移走前的主視圖正方形的個數(shù)為1,2,1;正方體①移走后的主視圖正方形的個數(shù)為1,2;發(fā)生改變.將正方體①移走前的左視圖正方形的個數(shù)為2,1,1;正方體①移走后的左視圖正方形的個數(shù)為2,1,1;沒有發(fā)生改變.將正方體①移走前的俯視圖正方形的個數(shù)為1,3,1;正方體①移走后的俯視圖正方形的個數(shù),1,3;發(fā)生改變.故選D.【考點】簡單組合體的三視圖.二、填空題(每小題3分,共24分)11、2n?1【分析】作O1C、O2D、O3E分別⊥OB,易找出圓半徑的規(guī)律,即可解題.【詳解】解:作O1C、O2D、O3E分別⊥OB,∵∠AOB=30°,∴OO1=2CO1,OO2=2DO2,OO3=2EO3,∵O1O2=DO2,O2O3=EO3,∴圓的半徑呈2倍遞增,∴⊙On的半徑為2n?1

CO1,∵⊙O1的半徑為1,∴⊙O10的半徑長=2n?1,故答案為:2n?1.【點睛】本題考查了圓切線的性質(zhì),考查了30°角所對直角邊是斜邊一半的性質(zhì),本題中找出圓半徑的規(guī)律是解題的關鍵.12、(﹣,﹣3)【分析】根據(jù)y=a(x﹣h)2+k的頂點是(h,k),可得答案.【詳解】解:y=﹣(x+)2﹣3的頂點坐標是(﹣,﹣3),故答案為:(﹣,﹣3).【點睛】本題考查了拋物線頂點坐標的問題,掌握拋物線頂點式解析式是解題的關鍵.13、y=﹣3x+1【分析】由DE∥BC可得出△ADE∽△ABC,再利用相似三角形的性質(zhì),可得出y關于x的函數(shù)解析式.【詳解】∵DE∥BC,∴△ADE∽△ABC,∴,即,∴y=﹣3x+1.故答案為:y=﹣3x+1.【點睛】本題考查根據(jù)實際問題列函數(shù)關系式,利用相似三角形的性質(zhì)得出是關鍵.14、【解析】根據(jù)眾數(shù)的概念求解可得.【詳解】∵數(shù)據(jù)4,3,x,1,1的眾數(shù)是1,∴x=1,故答案為1.【點睛】本題主要考查眾數(shù),求一組數(shù)據(jù)的眾數(shù)的方法:找出頻數(shù)最多的那個數(shù)據(jù),若幾個數(shù)據(jù)頻數(shù)都是最多且相同,此時眾數(shù)就是這多個數(shù)據(jù).15、1.【分析】畫出圖形,找到三角形的重心與外心,利用重心和外心的性質(zhì)求距離即可.【詳解】如圖,點D為三角形外心,點I為三角形重心,DI為所求.∵直角三角形的外心是斜邊的中點,∴CD=AB=6,∵I是△ABC的重心,∴DI=CD=1,故答案為:1.【點睛】本題主要考查三角形的重心和外心,能夠掌握三角形的外心和重心的性質(zhì)是解題的關鍵.16、.【解析】試題分析:根據(jù)扇形的面積公式求解.試題解析:.考點:扇形的面積公式.17、1750【分析】設王霞出發(fā)時步行速度為a米/分鐘,爸爸騎車速度為b米/分鐘,根據(jù)爸爸追上王霞的時間可以算出兩者速度關系,然后利用學校和單位之間距離4750建立方程求出a,即可算出家到學校的距離.【詳解】設王霞出發(fā)時步行速度為a米/分鐘,爸爸騎車速度為b米/分鐘,由圖像可知9分鐘時爸爸追上王霞,則,整理得由圖像可知24分鐘時,爸爸到達單位,∵最后王霞比爸爸早10分鐘到達目的地∴王霞在第14分鐘到達學校,即拿到作業(yè)后用時14-9=5分鐘到達學校爸爸騎車用時24-9=15分鐘到達單位,單位與學校相距4750米,∴將代入可得,解得∴王霞的家與學校的距離為米故答案為:1750.【點睛】本題考查函數(shù)圖像信息問題,解題的關鍵是讀懂圖像中數(shù)據(jù)的含義,求出王霞的速度.18、【分析】過D作DM⊥AB,根據(jù)計算即得.【詳解】過D作DM⊥AB,如下圖:∵為的中點,以點為圓心,長為半徑作弧,交于點∴AD=ED=CD∴,∵∴∴∵在中,∴∵∴∴∴,,∴,,∴故答案為:【點睛】本題考查了求解不規(guī)則圖形的面積,解題關鍵是通過容斥原理將不規(guī)則圖形轉(zhuǎn)化為規(guī)則圖形.三、解答題(共66分)19、(1)90;(2)DE∥BC,見解析【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)即可求得旋轉(zhuǎn)角的度數(shù);(2)先利求得∠DCE=∠BCF=90°,CD=CE,可得△CDE為等腰直角三角形,即∠CDE=45°,再根據(jù)角平分線定義得到∠BCD=45°,則∠CDE=∠BCD,然后根據(jù)平行線的判定定理即可說明.【詳解】解:(1)解:∵將△CDB繞點C順時針旋轉(zhuǎn)到△CEF的位置,點F在AC上,∴∠BCF=90°,即旋轉(zhuǎn)角為90°;故答案為90°.(2),理由如下:∵將繞點順時針旋轉(zhuǎn)到的位置,點在上,∴,,∴為等腰直角三角形,∴,∵平分交于點,∴,∴,∴.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì)以及平行線的判定,掌握旋轉(zhuǎn)變換前后圖形的特點以及旋轉(zhuǎn)角的定義是解答本題的關鍵.20、1【分析】連接OC,利用直徑AB=10,則OC=OA=5,再由CD⊥AB,根據(jù)垂徑定理得CE=DE=CD=4,然后利用勾股定理計算出OE,再利用AE=OA-OE進行計算即可.【詳解】連接OC,如圖,∵AB是⊙O的直徑,AB=10,∴OC=OA=5,∵CD⊥AB,∴CE=DE=CD=×8=4,在Rt△OCE中,OC=5,CE=4,∴OE==3,∴AE=OA﹣OE=5﹣3=1.【點睛】本題考查了垂徑定理,掌握垂徑定理及勾股定理是關鍵.21、解:(1)1.(2)補全圖形,如圖所示:(3)列表如下:

﹣﹣﹣

(乙,甲)

(丙,甲)

(丁,甲)

(甲,乙)

﹣﹣﹣

(丙,乙)

(丁,乙)

(甲,丙)

(乙,丙)

﹣﹣﹣

(丁,丙)

(甲,?。?/p>

(乙,?。?/p>

(丙,?。?/p>

﹣﹣﹣

∵所有等可能的結(jié)果為12種,其中符合要求的只有2種,∴恰好選中甲、乙兩位同學的概率為.【解析】(1)由喜歡籃球的人數(shù)除以所占的百分比即可求出總?cè)藬?shù):(人).(2)由總?cè)藬?shù)減去喜歡A,B及D的人數(shù)求出喜歡C的人數(shù),補全統(tǒng)計圖即可.(3)根據(jù)題意列出表格或畫樹狀圖,得出所有等可能的情況數(shù),找出滿足題意的情況數(shù),即可求出所求的概率.22、兩個小球的號碼相同的概率為.【解析】【試題分析】利用樹狀圖求等可能事件的概率,樹狀圖見解析.【試題解析】畫樹狀圖得:

∵共有6種等可能的結(jié)果,這兩個小球的號碼相同的有2情況,

∴這兩個小球的號碼相同的概率為:.23、(1)詳見解析;(2)2;(3)5.【分析】(1)根據(jù)等腰三角形的判定即可求解;(2)根據(jù)切線的性質(zhì)證明,根據(jù)得到,再得到,故,表示出,再根據(jù)中,利用的定義即可求解;(3)根據(jù),利用三角函數(shù)的定義即可求解.【詳解】(1)證明:∵,為中點,∴,∴.又∵,∴,∴.∵,∴,∴,∴.(2)解:∵是的外接圓,且,∴是直徑.∵是切線,∴,∵,∴,∴,∵,∴,∴設,,∴.∵,,∴,∴,∴,∴,∴在中,.(3)∵,∴,∴,.∴,.∴,由(1)得∴,∴AG=BG故G為BC中點,∴.【點睛】.此題主要考查圓的綜合問題,解題的關鍵是熟知圓切線的判定、三角函數(shù)的定義、相似三角形的判定與性質(zhì).24、(1)6;(2);(3)或【分析】(1)令x=0求得A的坐標,再根據(jù)軸,令y=3即可求解;(2)證明,則,即可求解;(3)當?shù)拿娣e是四邊形的面積的2倍時,則,,即可求解.【詳解】解:(1)∵拋物線交軸于點,∴,∵軸,∴B的縱坐標為3,設B的橫坐標為a,則,解得,(舍),∴,∴;(2)設,,,,,解得.(3)當?shù)拿娣e是四邊形的面積的2倍時,則,得:,,或【點睛】本題考查的是二次函數(shù)綜合,涉及到一次函數(shù)、三角形相似、圖形的面積計算等,逐一分類討論.25、(1);(2)3;(3)存在,點Q的坐標為或或或.【解析】【分析】(1)求出點A、B、E的坐標,設直線的解析式為,將點A和點E的坐標代入即可;(2)先求出直線CE解析式,過點P作軸,交CE與點F,設點P的坐標為,則點F,從而可表示出△EPC的面積,利用二次函數(shù)性質(zhì)可求出x的值,從而得到點P的坐標,作點K關于CD和CP的對稱點G、H,連接G、H交CD和CP與N、M,當點O、N、M、H在一條直線上時,KM+MN+NK有最小值,最小值=GH,利用勾股定理求出GH即可;(3)由平移后的拋物線經(jīng)過點D,可得到點F的坐標,利用中點坐標公式可求得點G的坐標,然后分為三種情況討論求解即可.【詳解】解:(1)當時,設直線的解析式為,將點A和點E的坐標代入得解得所以直線的解析式為.(2)設直線CE的解析式為,將點E的坐標代入得:解得:直線CE的解析式為如圖,過點P作軸,交CE與點F設點P的坐標為,則點F則FP=∴當時,△EPC的面積最大,此時如圖2所示:作點K關于CD和CP的對稱點G、H,連接G、H交CD和CP與N、MK是CB的中點,OD=1,OC=3K是BC的中點,∠OCB=60°

點O與點K關于CD對稱點G與點O重合∴點G(0,0)點H與點K關于CP對稱∴點H的坐標為當點O、N、M、H在條直線上時,KM+MN+NK有最小值,最小值=GH

的最小值為3.(3)如圖經(jīng)過點D,的頂點為點F∴點點G為CE的中點,當FG=FQ時,點或當GF=GQ時,點F與點關于直線對稱點當QG=QF時,設點的坐標為由兩點間的距離公式可得:,解得點的坐標為綜上所述,點Q的坐標為或或或【點睛】本題考查了二次函數(shù)的圖像與性質(zhì)的應用,涉及的知識點主要有待定系數(shù)法求一次函數(shù)的解析式、三角函數(shù)、勾股定理、對稱的坐標變換、兩點間的距離公式、等腰三角形的性質(zhì)及判定,綜合性較強,靈活利用點坐標表示線段長是解題的關鍵.26、(1)120°;(2);(3)≤OE≤【分析】(1)利

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論