2021-2022學年河南省開封市高三下學期一模考試數(shù)學試題含解析_第1頁
2021-2022學年河南省開封市高三下學期一??荚嚁?shù)學試題含解析_第2頁
2021-2022學年河南省開封市高三下學期一模考試數(shù)學試題含解析_第3頁
2021-2022學年河南省開封市高三下學期一??荚嚁?shù)學試題含解析_第4頁
2021-2022學年河南省開封市高三下學期一模考試數(shù)學試題含解析_第5頁
免費預覽已結(jié)束,剩余13頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2022年高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于,兩點,若,則△的內(nèi)切圓的半徑為()A. B. C. D.2.函數(shù)的單調(diào)遞增區(qū)間是()A. B. C. D.3.已知橢圓+=1(a>b>0)與直線交于A,B兩點,焦點F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.4.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,它的終邊過點,則的值為()A. B. C. D.5.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.6.三國時代吳國數(shù)學家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設勾股形中勾股比為,若向弦圖內(nèi)隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為()A. B. C. D.7.若雙曲線的焦距為,則的一個焦點到一條漸近線的距離為()A. B. C. D.8.胡夫金字塔是底面為正方形的錐體,四個側(cè)面都是相同的等腰三角形.研究發(fā)現(xiàn),該金字塔底面周長除以倍的塔高,恰好為祖沖之發(fā)現(xiàn)的密率.設胡夫金字塔的高為,假如對胡夫金字塔進行亮化,沿其側(cè)棱和底邊布設單條燈帶,則需要燈帶的總長度約為A. B.C. D.9.設復數(shù),則=()A.1 B. C. D.10.已知i為虛數(shù)單位,則()A. B. C. D.11.已知函數(shù)且的圖象恒過定點,則函數(shù)圖象以點為對稱中心的充要條件是()A. B.C. D.12.已知集合,若,則實數(shù)的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角所對的邊分別是,若,,則__________.14.給出下列四個命題,其中正確命題的序號是_____.(寫出所有正確命題的序號)因為所以不是函數(shù)的周期;對于定義在上的函數(shù)若則函數(shù)不是偶函數(shù);“”是“”成立的充分必要條件;若實數(shù)滿足則.15.齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機選一匹進行一場比賽,則田忌的馬獲勝的概率為__________.16.已知雙曲線的左、右焦點和點為某個等腰三角形的三個頂點,則雙曲線C的離心率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當時,若恒成立,求的最大值;(2)記的解集為集合A,若,求實數(shù)的取值范圍.18.(12分)設不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.19.(12分)已知各項均為正數(shù)的數(shù)列的前項和為,且是與的等差中項.(1)證明:為等差數(shù)列,并求;(2)設,數(shù)列的前項和為,求滿足的最小正整數(shù)的值.20.(12分)設函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.21.(12分)如圖,在四棱錐中,底面是邊長為2的菱形,,平面平面,點為棱的中點.(Ⅰ)在棱上是否存在一點,使得平面,并說明理由;(Ⅱ)當二面角的余弦值為時,求直線與平面所成的角.22.(10分)選修4-5:不等式選講設函數(shù).(1)當時,求不等式的解集;(2)若在上恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

設左焦點的坐標,由AB的弦長可得a的值,進而可得雙曲線的方程,及左右焦點的坐標,進而求出三角形ABF2的面積,再由三角形被內(nèi)切圓的圓心分割3個三角形的面積之和可得內(nèi)切圓的半徑.【詳解】由雙曲線的方程可設左焦點,由題意可得,由,可得,所以雙曲線的方程為:所以,所以三角形ABF2的周長為設內(nèi)切圓的半徑為r,所以三角形的面積,所以,解得,故選:B【點睛】本題考查求雙曲線的方程和雙曲線的性質(zhì)及三角形的面積的求法,內(nèi)切圓的半徑與三角形長周長的一半之積等于三角形的面積可得半徑的應用,屬于中檔題.2.D【解析】

利用輔助角公式,化簡函數(shù)的解析式,再根據(jù)正弦函數(shù)的單調(diào)性,并采用整體法,可得結(jié)果.【詳解】因為,由,解得,即函數(shù)的增區(qū)間為,所以當時,增區(qū)間的一個子集為.故選D.【點睛】本題考查了輔助角公式,考查正弦型函數(shù)的單調(diào)遞增區(qū)間,重點在于把握正弦函數(shù)的單調(diào)性,同時對于整體法的應用,使問題化繁為簡,難度較易.3.A【解析】

聯(lián)立直線與橢圓方程求出交點A,B兩點,利用平面向量垂直的坐標表示得到關于的關系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設A(0,a),B(-b,0),由題意可知,·=0,因為,,由平面向量垂直的坐標表示可得,,因為,所以a2-c2=ac,兩邊同時除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點睛】本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標表示;考查運算求解能力和知識遷移能力;利用平面向量垂直的坐標表示得到關于的關系式是求解本題的關鍵;屬于中檔題、常考題型.4.B【解析】

根據(jù)三角函數(shù)定義得到,故,再利用和差公式得到答案.【詳解】∵角的終邊過點,∴,.∴.故選:.【點睛】本題考查了三角函數(shù)定義,和差公式,意在考查學生的計算能力.5.B【解析】

列出每一次循環(huán),直到計數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.6.A【解析】分析:設三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內(nèi)的概率即可得出結(jié)論.解析:設三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內(nèi)的概率為.落在黃色圖形內(nèi)的圖釘數(shù)大約為.故選:A.點睛:應用幾何概型求概率的方法建立相應的幾何概型,將試驗構(gòu)成的總區(qū)域和所求事件構(gòu)成的區(qū)域轉(zhuǎn)化為幾何圖形,并加以度量.(1)一般地,一個連續(xù)變量可建立與長度有關的幾何概型,只需把這個變量放在數(shù)軸上即可;(2)若一個隨機事件需要用兩個變量來描述,則可用這兩個變量的有序?qū)崝?shù)對來表示它的基本事件,然后利用平面直角坐標系就能順利地建立與面積有關的幾何概型;(3)若一個隨機事件需要用三個連續(xù)變量來描述,則可用這三個變量組成的有序數(shù)組來表示基本事件,利用空間直角坐標系即可建立與體積有關的幾何概型.7.B【解析】

根據(jù)焦距即可求得參數(shù),再根據(jù)點到直線的距離公式即可求得結(jié)果.【詳解】因為雙曲線的焦距為,故可得,解得,不妨取;又焦點,其中一條漸近線為,由點到直線的距離公式即可求的.故選:B.【點睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質(zhì),屬綜合基礎題.8.D【解析】

設胡夫金字塔的底面邊長為,由題可得,所以,該金字塔的側(cè)棱長為,所以需要燈帶的總長度約為,故選D.9.A【解析】

根據(jù)復數(shù)的除法運算,代入化簡即可求解.【詳解】復數(shù),則故選:A.【點睛】本題考查了復數(shù)的除法運算與化簡求值,屬于基礎題.10.A【解析】

根據(jù)復數(shù)乘除運算法則,即可求解.【詳解】.故選:A.【點睛】本題考查復數(shù)代數(shù)運算,屬于基礎題題.11.A【解析】

由題可得出的坐標為,再利用點對稱的性質(zhì),即可求出和.【詳解】根據(jù)題意,,所以點的坐標為,又,所以.故選:A.【點睛】本題考查指數(shù)函數(shù)過定點問題和函數(shù)對稱性的應用,屬于基礎題.12.A【解析】

解一元二次不等式化簡集合的表示,求解函數(shù)的定義域化簡集合的表示,根據(jù)可以得到集合、之間的關系,結(jié)合數(shù)軸進行求解即可.【詳解】,.因為,所以有,因此有.故選:A【點睛】本題考查了已知集合運算的結(jié)果求參數(shù)取值范圍問題,考查了解一元二次不等式,考查了函數(shù)的定義域,考查了數(shù)學運算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先求得的值,由此求得的值,再利用正弦定理求得的值.【詳解】由于,所以,所以.由正弦定理得.故答案為:【點睛】本小題主要考查正弦定理解三角形,考查同角三角函數(shù)的基本關系式,考查兩角和的正弦公式,考查三角形的內(nèi)角和定理,屬于中檔題.14.【解析】

對①,根據(jù)周期的定義判定即可.對②,根據(jù)偶函數(shù)滿足的性質(zhì)判定即可.對③,舉出反例判定即可.對④,求解不等式再判定即可.【詳解】解:因為當時,所以由周期函數(shù)的定義知不是函數(shù)的周期,故正確;對于定義在上的函數(shù),若,由偶函數(shù)的定義知函數(shù)不是偶函數(shù),故正確;當時不滿足則“”不是“”成立的充分不必要條件,故錯誤;若實數(shù)滿足則所以成立,故正確.正確命題的序號是.故答案為:.【點睛】本題主要考查了命題真假的判定,屬于基礎題.15..【解析】分析:由題意結(jié)合古典概型計算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結(jié)合古典概型公式可得,田忌的馬獲勝的概率為.點睛:有關古典概型的概率問題,關鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.16.【解析】

由等腰三角形及雙曲線的對稱性可知或,進而利用兩點間距離公式求解即可.【詳解】由題設雙曲線的左、右焦點分別為,,因為左、右焦點和點為某個等腰三角形的三個頂點,當時,,由可得,等式兩邊同除可得,解得(舍);當時,,由可得,等式兩邊同除可得,解得,故答案為:【點睛】本題考查求雙曲線的離心率,考查雙曲線的幾何性質(zhì)的應用,考查分類討論思想.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】

(1)當時,由題意得到,令,分類討論求得函數(shù)的最小值,即可求得的最大值.(2)由時,不等式恒成立,轉(zhuǎn)化為在上恒成立,得到,即可求解.【詳解】(1)由題意,當時,由,可得,令,則只需,當時,;當時,;當時,;故當時,取得最小值,即的最大值為.(2)依題意,當時,不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,則,所以,所示實數(shù)的取值范圍是.【點睛】本題主要考查了含絕對值的不等式的解法,以及不等式的恒成立問題的求解與應用,著重考查了轉(zhuǎn)化思想,以及推理與計算能力.18.(1)證明見解析;(2).【解析】試題分析:(1)首先求得集合M,然后結(jié)合絕對值不等式的性質(zhì)即可證得題中的結(jié)論;(2)利用平方做差的方法可證得|1-4ab|>2|a-b|.試題解析:(Ⅰ)證明:記f(x)=|x-1|-|x+2|,則f(x)=,所以解得-<x<,故M=(-,).所以,||≤|a|+|b|<×+×=.(Ⅱ)由(Ⅰ)得0≤a2<,0≤b2<.|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=4(a2-1)(b2-1)>0.所以,|1-4ab|>2|a-b|.19.(1)見解析,(2)最小正整數(shù)的值為35.【解析】

(1)由等差中項可知,當時,得,整理后可得,從而證明為等差數(shù)列,繼而可求.(2),則可求出,令,即可求出的取值范圍,進而求出最小值.【詳解】解析:(1)由題意可得,當時,,∴,,當時,,整理可得,∴是首項為1,公差為1的等差數(shù)列,∴,.(2)由(1)可得,∴,解得,∴最小正整數(shù)的值為35.【點睛】本題考查了等差中項,考查了等差數(shù)列的定義,考查了與的關系,考查了裂項相消求和.當已知有與的遞推關系時,常代入進行整理.證明數(shù)列是等差數(shù)列時,一般借助數(shù)列,即后一項與前一項的差為常數(shù).20.(1)整數(shù)的最大值為;(2)見解析.【解析】

(1)將不等式變形為,構(gòu)造函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性并確定其最值,從而得到正整數(shù)的最大值;(2)根據(jù)(1)的結(jié)論得到,利用不等式的基本性質(zhì)可證得結(jié)論.【詳解】(1)由得,令,,令,對恒成立,所以,函數(shù)在上單調(diào)遞增,,,,,故存在使得,即,從而當時,有,,所以,函數(shù)在上單調(diào)遞增;當時,有,,所以,函數(shù)在上單調(diào)遞減.所以,,,因此,整數(shù)的最大值為;(2)由(1)知恒成立,,令則,,,,,上述等式全部相加得,所以,,因此,【點睛】本題考查導數(shù)在函數(shù)單調(diào)性、最值中的應用,以及放縮法證明不等式的技巧,屬于難題.21.(1)見解析(2)【解析】

(Ⅰ)取的中點,連結(jié)、,得到故且,進而得到,利用線面平行的判定定理,即可證得平面.(Ⅱ)以為坐標原點建立如圖空間直角坐標系,設,求得平面的法向量為,和平面的法向量,利用向量的夾角公式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論