版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.三角形在正方形網(wǎng)格紙中的位置如圖所示,則的值是()A. B. C. D.2.如圖是用圍棋棋子在6×6的正方形網(wǎng)格中擺出的圖案,棋子的位置用有序數(shù)對表示,如A點為(5,1),若再擺一黑一白兩枚棋子,使這9枚棋子組成的圖案既是軸對稱圖形又是中心對稱圖形,則下列擺放正確的是()A.黑(1,5),白(5,5) B.黑(3,2),白(3,3)C.黑(3,3),白(3,1) D.黑(3,1),白(3,3)3.如圖,在等腰中,于點,則的值()A. B. C. D.4.如圖,在平面直角坐標系中,點O為坐標原點,平行四邊形OABC的頂點A在反比例函數(shù)上,頂點B在反比例函數(shù)上,點C在x軸的正半軸上,則平行四邊形OABC的面積是()A. B. C.4 D.65.下列圖形中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.6.如圖,某超市自動扶梯的傾斜角為,扶梯長為米,則扶梯高的長為()A.米 B.米 C.米 D.米7.若,且,則的值是()A.4 B.2 C.20 D.148.下列運算正確的是()A. B.C. D.9.已知等腰三角形ABC中,腰AB=8,底BC=5,則這個三角形的周長為()A.21 B.20 C.19 D.1810.若關于x的一元二次方程x2+2x+k=0有兩個不相等的實數(shù)根,則k的最大整數(shù)是()A.1 B.0 C.﹣1 D.﹣211.如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤12.如圖,在中,,,,,則的長為()A.6 B.7 C.8 D.9二、填空題(每題4分,共24分)13.如圖,已知點A,C在反比例函數(shù)的圖象上,點B,D在反比例函的圖象上,AB∥CD∥x軸,AB,CD在x軸的兩側,AB=5,CD=4,AB與CD的距離為6,則a?b的值是_______.14.如圖,點在反比例函數(shù)的圖象上,過點作AB⊥軸,AC⊥軸,垂足分別為點,若,,則的值為____.15.如圖,若拋物線與軸無交點,則應滿足的關系是__________.16.把方程2x2﹣1=x(x+3)化成一般形式是_________.17.已知和時,多項式的值相等,則m的值等于______.18.如圖,將一張矩形紙片ABCD沿對角線BD折疊,點C的對應點為,再將所折得的圖形沿EF折疊,使得點D和點A重合若,,則折痕EF的長為______.三、解答題(共78分)19.(8分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,3),B(﹣3,n)兩點.(1)求反比例函數(shù)的解析式;(2)過B點作BC⊥x軸,垂足為C,若P是反比例函數(shù)圖象上的一點,連接PC,PB,求當△PCB的面積等于5時點P的坐標.20.(8分)如圖,已知四邊形ABCD中,E是對角線AC上一點,DE=EC,以AE為直徑的⊙O與CD相切于點D,點B在⊙O上,連接OB.(1)求證:DE=OE;(2)若CD∥AB,求證:BC是⊙O的切線.21.(8分)已知正方形ABCD的邊長為2,中心為M,⊙O的半徑為r,圓心O在射線BD上運動,⊙O與邊CD僅有一個公共點E.(1)如圖1,若圓心O在線段MD上,點M在⊙O上,OM=DE,判斷直線AD與⊙O的位置關系,并說明理由;(2)如圖2,⊙O與邊AD交于點F,連接MF,過點M作MF的垂線與邊CD交于點G,若,設點O與點M之間的距離為,EG=,當時,求的函數(shù)解析式.22.(10分)我們規(guī)定:方程的變形方程為.例如:方程的變形方程為.(1)直接寫出方程的變形方程;(2)若方程的變形方程有兩個不相等的實數(shù)根,求的取值范圍;(3)若方程的變形方程為,直接寫出的值.23.(10分)某公司銷售一種新型節(jié)能產(chǎn)品,現(xiàn)準備從國內和國外兩種銷售方案中選擇一種進行銷售.若只在國內銷售,銷售價格y(元/件)與月銷量x(件)的函數(shù)關系式為y=x+150,成本為20元/件,無論銷售多少,每月還需支出廣告費62500元,設月利潤為w內(元)(利潤=銷售額-成本-廣告費).若只在國外銷售,銷售價格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當月銷量為x(件)時,每月還需繳納x2元的附加費,設月利潤為w外(元)(利潤=銷售額-成本-附加費).(1)當x=1000時,y=元/件,w內=元;(2)分別求出w內,w外與x間的函數(shù)關系式(不必寫x的取值范圍);(3)當x為何值時,在國內銷售的月利潤最大?若在國外銷售月利潤的最大值與在國內銷售月利潤的最大值相同,求a的值;(4)如果某月要將5000件產(chǎn)品全部銷售完,請你通過分析幫公司決策,選擇在國內還是在國外銷售才能使所獲月利潤較大?參考公式:拋物線的頂點坐標是.24.(10分)如圖,一位測量人員,要測量池塘的寬度的長,他過A、B兩點畫兩條相交于點的射線,在射線上取兩點D、E,使,若測得DE=37.2米,他能求出A、B之間的距離嗎?若能,請你幫他算出來;若不能,請你幫他設計一個可行方案.25.(12分)如圖,小巷左右兩側是豎直的墻,一架梯子AC斜靠在右墻,測得梯子與地面的夾角為45°,梯子底端與墻的距離CB=2米,若梯子底端C的位置不動,再將梯子斜靠在左墻,測得梯子與地面的夾角為60°,則此時梯子的頂端與地面的距離A'D的長是多少米?(結果保留根號)26.“道路千萬條,安全第一條”,《中華人民共和國道路交通管理條例》規(guī)定:“小汽車在城市街道上的行駛速度不得超過”,一輛小汽車在一條城市街道上由西向東行駛,在據(jù)路邊處有“車速檢測儀”,測得該車從北偏西的點行駛到北偏西的點,所用時間為.(1)試求該車從點到點的平均速度(結果保留根號);(2)試說明該車是否超速.
參考答案一、選擇題(每題4分,共48分)1、A【分析】根據(jù)圖形找到對邊和斜邊即可解題.【詳解】解:由網(wǎng)格紙可知,故選A.【點睛】本題考查了三角函數(shù)的實際應用,屬于簡單題,熟悉三角函數(shù)的概念是解題關鍵.2、D【分析】利用軸對稱圖形以及中心對稱圖形的性質即可解答.【詳解】如圖所示:黑(3,1),白(3,3).故選D.【點睛】此題主要考查了旋轉變換以及軸對稱變換,正確把握圖形的性質是解題關鍵.3、D【分析】先由,易得,由可得,進而用勾股定理分別將BD、BC長用AB表示出來,再根據(jù)即可求解.【詳解】解:∵,,∴,∴,又∵,∴,在中,,∴,故選:D【點睛】本題主要考查了解三角形,涉及了等腰三角形性質和勾股定理以及三角函數(shù)的定義.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結合思想的應用.4、C【分析】作BD⊥x軸于D,延長BA交y軸于E,然后根據(jù)平行四邊形的性質和反比例函數(shù)系數(shù)k的幾何意義即可求得答案.【詳解】解:如圖作BD⊥x軸于D,延長BA交y軸于E,∵四邊形OABC是平行四邊形,∴AB∥OC,OA=BC,∴BE⊥y軸,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),根據(jù)反比例函數(shù)系數(shù)k的幾何意義得,S矩形BDOE=5,S△AOE=,∴平行四邊形OABC的面積,故選:C.【點睛】本題考查了反比例函數(shù)的比例系數(shù)k的幾何意義、平行四邊形的性質等,有一定的綜合性5、C【分析】觀察四個選項中的圖形,找出既是軸對稱圖形又是中心對稱圖形的那個即可得出結論.【詳解】解:A、此圖形不是軸對稱圖形,是中心對稱圖形,此選項不符合題意;B、此圖形是軸對稱圖形,不是中心對稱圖形,此選項不符合題意;C、此圖形是軸對稱圖形,也是中心對稱圖形,此選項符合題意;D、此圖形既不是軸對稱圖形也不是中心對稱圖形,此選項不符合題意;故選:C.【點睛】本題考查了中心對稱圖形以及軸對稱圖形,牢記軸對稱及中心對稱圖形的特點是解題的關鍵.6、A【詳解】解:由題意,在Rt△ABC中,∠ABC=31°,由三角函數(shù)關系可知,
AC=AB?sinα=9sin31°(米).
故選A.【點睛】本題主要考查了三角函數(shù)關系在直角三角形中的應用.7、A【分析】根據(jù),且,得到,即可求解.【詳解】解:∵,∴,∵,∴,∴,故選:A.【點睛】本題考查比例的性質,掌握比例的性質是解題的關鍵.8、B【分析】根據(jù)完全平方公式、同底數(shù)冪乘法、同底數(shù)冪除法、合并同類項法則逐一進行分析判斷即可.【詳解】因為,所以選項A錯誤;,所以B選項正確;,故選項C錯誤;因為與不是同類項,不能合并,故選項D錯誤,故選B.【點睛】本題考查了整式的運算,涉及了完全平方公式、同底數(shù)冪乘除法等,熟練掌握各運算的運算法則是解題的關鍵.9、A【解析】試題分析:由于等腰三角形的兩腰相等,題目給出了腰和底,根據(jù)周長的定義即可求解:∵8+8+5=1.∴這個三角形的周長為1.故選A.考點:等腰三角形的性質.10、B【分析】根據(jù)題意知,,代入數(shù)據(jù),即可求解.【詳解】由題意知:一元二次方程x2+2x+k=1有兩個不相等的實數(shù)根,∴解得∴.∴k的最大整數(shù)是1.故選B.【點睛】本題主要考查了利用一元二次方程根的情況求參數(shù)范圍,正確掌握利用一元二次方程根的情況求參數(shù)范圍的方法是解題的關鍵.11、D【解析】根據(jù)正方形的性質可得AB=BC=AD,∠ABC=∠BAD=90°,再根據(jù)中點定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據(jù)全等三角形對應角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據(jù)鄰補角的定義可得∠AME=90°,從而判斷①正確;根據(jù)中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯誤;根據(jù)直角三角形的性質判斷出△AED、△MAD、△MEA三個三角形相似,利用相似三角形對應邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據(jù)相似三角形對應邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過點M作GH∥AB,過點O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據(jù)正方形的性質求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分別為邊AB,BC的中點,
∴AE=BF=BC,
在△ABF和△DAE中,,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;
∵DE是△ABD的中線,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②錯誤;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正確;
設正方形ABCD的邊長為2a,則BF=a,
在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正確;
如圖,過點M作MN⊥AB于N,
則即解得MN=,AN=,
∴NB=AB-AN=2a-=,
根據(jù)勾股定理,BM=過點M作GH∥AB,過點O作OK⊥GH于K,
則OK=a-=,MK=-a=,
在Rt△MKO中,MO=根據(jù)正方形的性質,BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正確;
綜上所述,正確的結論有①③④⑤共4個.故選:D【點睛】本題考查了正方形的性質,全等三角形的判定與性質,相似三角形的判定與性質,勾股定理的應用,勾股定理逆定理的應用,綜合性較強,難度較大,仔細分析圖形并作出輔助線構造出直角三角形與相似三角形是解題的關鍵.12、C【分析】根據(jù)平行線分線段成比例定理,由DE∥BC得,然后利用比例性質求EC和AE的值即可【詳解】∵,∴,即,∴,∴.故選C.【點睛】此題考查平行線分線段成比例,解題關鍵在于求出AE二、填空題(每題4分,共24分)13、【分析】利用反比例函數(shù)k的幾何意義得出a-b=4?OE,a-b=5?OF,求出=6,即可求出答案.【詳解】如圖,∵由題意知:a-b=4?OE,a-b=5?OF,∴OE=,OF=,又∵OE+OF=6,∴=6,∴a-b=,故答案為:.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,能求出方程=6是解此題的關鍵.14、【分析】求出點A坐標,即可求出k的值.【詳解】解:根據(jù)題意,設點A的坐標為(x,y),∵,,AB⊥軸,AC⊥軸,∴點A的橫坐標為:;點A的縱坐標為:;∵點A在反比例函數(shù)的圖象上,∴;故答案為:.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)解析式,解題的關鍵是熟練掌握反比例函數(shù)圖象上點的坐標特征.15、【分析】根據(jù)拋物線與軸交點個數(shù)與的符號關系即可得出結論.【詳解】解:∵拋物線與軸無交點∴故答案為:.【點睛】此題考查的是根據(jù)拋物線與軸交點個數(shù)判斷的關系,掌握拋物線與軸交點個數(shù)與的符號關系是解決此題的關鍵.16、x2﹣3x﹣1=1【解析】2x2﹣1=x(x+3),2x2﹣1=x2+3x,則2x2﹣x2﹣3x﹣1=1,故x2﹣3x﹣1=1,故答案為x2﹣3x﹣1=1.17、或1【分析】根據(jù)和時,多項式的值相等,得出,解方程即可.【詳解】解:和時,多項式的值相等,,化簡整理,得,,解得或1.故答案為或1.【點睛】本題考查多項式以及代數(shù)式求值,正確理解題意是解題的關鍵.18、【分析】首先由折疊的性質與矩形的性質,證得是等腰三角形,則在中,利用勾股定理,借助于方程即可求得AN的長,又由≌,易得:,由三角函數(shù)的性質即可求得MF的長,又由中位線的性質求得EM的長,則問題得解【詳解】如圖,設與AD交于N,EF與AD交于M,根據(jù)折疊的性質可得:,,,四邊形ABCD是矩形,,,,,,,設,則,在中,,,,即,,,,≌,,,,,,由折疊的性質可得:,,,,,故答案為.【點睛】本題考查了折疊的性質,全等三角形的判定與性質,三角函數(shù)的性質以及勾股定理等知識,綜合性較強,有一定的難度,解題時要注意數(shù)形結合思想與方程思想的應用.三、解答題(共78分)19、(1)y=;(2)點P的坐標為(﹣8,﹣),(2,3).【分析】(1)將A坐標代入反比例函數(shù)解析式中求出m的值,即可確定出反比例函數(shù)解析式;
(2)由B點(-3,n)在反比例函數(shù)y=的圖象上,于是得到B(-3,-2),求得BC=2,設△PBC在BC邊上的高為h,根據(jù)三角形的面積公式列方程即可得到結論.【詳解】(1)∵反比例函數(shù)y=的圖象經(jīng)過點A(2,3),∴m=1.∴反比例函數(shù)的解析式是y=;(2)∵B點(﹣3,n)在反比例函數(shù)y=的圖象上,∴n=﹣2,∴B(﹣3,﹣2),∴BC=2,設△PBC在BC邊上的高為h,則BC?h=5,∴h=5,∵P是反比例函數(shù)圖象上的一點,∴點P的橫坐標為:﹣8或2,∴點P的坐標為(﹣8,﹣),(2,3).【點睛】此題考查了一次函數(shù)與反比例函數(shù)的交點問題,涉及的知識有:待定系數(shù)法求函數(shù)解析式,坐標與圖形性質,一次函數(shù)與坐標軸的交點,以及反比例函數(shù)的圖象與性質,熟練掌握待定系數(shù)法是解本題的關鍵.20、(1)詳見解析;(2)詳見解析【分析】(1)先判斷出∠2+∠3=90°,再判斷出∠1=∠2即可得出結論;
(2)根據(jù)等腰三角形的性質得到∠3=∠COD=∠DEO=60°,根據(jù)平行線的性質得到∠4=∠1,根據(jù)全等三角形的性質得到∠CBO=∠CDO=90°,于是得到結論;【詳解】(1)如圖,連接OD,
∵CD是⊙O的切線,
∴OD⊥CD,
∴∠2+∠3=∠1+∠COD=90°,
∵DE=EC,
∴∠1=∠2,
∴∠3=∠COD,
∴DE=OE;
(2)∵OD=OE,
∴OD=DE=OE,
∴∠3=∠COD=∠DEO=60°,
∴∠2=∠1=30°,
∵AB∥CD,
∴∠4=∠1,
∴∠1=∠2=∠4=∠OBA=30°,
∴∠BOC=∠DOC=60°,在△CDO與△CBO中,,∴△CDO≌△CBO(SAS),
∴∠CBO=∠CDO=90°,
∴OB⊥BC,
∴BC是⊙O的切線;【點睛】此題主要考查了切線的判定和性質,同角的余角相等,等腰三角形的性質,判斷出△CDO≌△CBO是解本題的關鍵.21、(1)相切,證明詳見解析;(2).【分析】(1)過O作OF⊥AD于F,連接OE,可證△ODF≌△ODE,可得OF=OE,根據(jù)相切判定即可得出:AD與相切;(2)連接MC,可證,可得DF=CG,過點E作EP⊥BD于P,過點F作FH⊥BD于H設DP=a,DH=b,由于△DHF與△DPE都是等腰直角三角形,設EP=DP=a,F(xiàn)H=DH=b,利用勾股定理:可列出方程組解得a=b,可得,.由于可得,由可得OD=a,由OD=OM-DM,可得,代入2DF+y=2可得,整理得y與x的函數(shù)解析式,由DF≤1,EG≥0,可得x的取值范圍,即可求解問題.【詳解】解:(1)直線AD與⊙O相切,理由如下:過O作OF⊥AD于F,連接OE∴∠OFD=90°在正方形ABCD中,BD平分∠ADE,∠ADE=90°∴∠FDO=∠EDO=45°∵與CD僅有一個公共點E∴CD與相切∴OE⊥DC,OE為半徑∴∠OED=90°又∵OD=OD∴△ODF≌△ODE∴OF=OE∵OF⊥AD、OF=OE∴AD與相切(2)連接MC在正方形ABCD中,∠BCD=90°,∠ADB=45°∵∠BCD=90°,M為正方形的中心∴MC=MD=,∠ADB=∠DCM=45°∵FM⊥MG,即∠FMG=90°且在正方形ABCD中,∠DMC=90°∴∠FMD+∠DMG=∠DMG+∠CMG∴∠FMD=∠CMG∴∴DF=CG過點E作EP⊥BD于P,過點F作FH⊥BD于H設DP=a,DH=b∵∠FDM=∠EDM=45°∴△DHF與△DPE都是等腰直角三角形∴EP=DP=a,F(xiàn)H=DH=b∵,且由(1)得∴點O在正方形ABCD外∴OP=OD+DP,OH=OD+DH在Rt△OPE與Rt△OHF中得:(a-b)(OD+a+b)=0∴a-b=0或OD+a+b=0∵OD+a+b>0∴a-b=0∴a=b即點P與點H重合,也即EF⊥BD,垂足為P(或H)∵DP=a,DH=b∵在Rt△DPE中,在Rt△DHF中,∴DF=DE∵CD=DE+EG+CG=2,即2DF+EG=2∴2DF+y=2∵在Rt△DPF中,,且∴在Rt△OPE與Rt△OHF中∴∴OD+a=2a∴OD=a又因為OD=OM-DM,即∴又因為2DF+y=2∴∴∴∵DF≤1,且2DF+EG=2∴EG≥0,即y≥0∴∴∴y與x的函數(shù)解析式為【點睛】本題考查一次函數(shù)綜合題、正方形的性質、三角形全等的判定和性質、勾股定理等知識,解題的關鍵是靈活運用所學知識,學會利用參數(shù),構建方程以及方程組解決問題.22、(1);(2);(3)1【分析】(1)根據(jù)題目的規(guī)定直接寫出方程化簡即可.(2)先將方程變形,再根據(jù)判別式解出范圍即可.(3)先將變形前的方程列出來化簡求出a、b、c,相加即可求解.【詳解】(1)由題意得,化簡后得:.(2)若方程的變形方程為,即.由方程的變形方程有兩個不相等的實數(shù)根,可得方程的根的判別式,即.解得(3)變形前的方程為:,化簡后得:x2=0,∴a=1,b=0,c=0,∴a+b+c=1.【點睛】本題考查一元二次方程的運用,關鍵在于讀題根據(jù)規(guī)定變形即可.23、(1)1401;(2)w外=x2+(130-a)x;(3)a=2;(4)見解析【分析】(1)將x=1000代入函數(shù)關系式求得y,根據(jù)等量關系“利潤=銷售額-成本-廣告費”求得w內;
(2)根據(jù)等量關系“利潤=銷售額-成本-廣告費”,“利潤=銷售額-成本-附加費”列出兩個函數(shù)關系式;
(3)對w內函數(shù)的函數(shù)關系式求得最大值,再求出w外的最大值并令二者相等求得a值;
(4)根據(jù)x=3000,即可求得w內的值和w外關于a的一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年個人股權轉讓協(xié)議書范本4篇
- 2025年度綠色環(huán)保店鋪租賃及設施共建合同
- 2025版時尚服飾銷售合同模板(含季節(jié)性折扣)
- 2025年度個人別墅租賃合同模板2篇
- 2025年度環(huán)保工程監(jiān)理服務合同范本
- 2025年度商鋪買賣合同(含商業(yè)配套移交協(xié)議)4篇
- 2025-2030全球魚雷泵行業(yè)調研及趨勢分析報告
- 2025年全球及中國賽車運動駕駛模擬器行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2024年臨床醫(yī)師定期考核試題中醫(yī)知識題庫及答案(共330題) (二)
- 2024年七年級語文下冊期末專項復習:記敘文閱讀
- EHS工程師招聘筆試題與參考答案(某大型央企)2024年
- 營銷策劃 -麗亭酒店品牌年度傳播規(guī)劃方案
- 2025年中國蛋糕行業(yè)市場規(guī)模及發(fā)展前景研究報告(智研咨詢發(fā)布)
- 潤滑油過濾培訓
- 護理組長年底述職報告
- 浙江省紹興市2023-2024學年高一上學期期末考試物理試題(含答案)
- 2013年6月22日下午湖北省公務員國家安全局面試真題
- 2024-2030年中國生命體征監(jiān)測行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 唐山市重點中學2024-2025學年全國高考大聯(lián)考信息卷:數(shù)學試題試卷(3)含解析
- 未成年上班知情協(xié)議書
- DZ∕T 0213-2020 礦產(chǎn)地質勘查規(guī)范 石灰?guī)r、水泥配料類(正式版)
評論
0/150
提交評論