![2021-2022學(xué)年吉林省長春十一中高考數(shù)學(xué)四模試卷含解析_第1頁](http://file4.renrendoc.com/view/d6c3c1a30b08c95bc9d7fc458795a9e9/d6c3c1a30b08c95bc9d7fc458795a9e91.gif)
![2021-2022學(xué)年吉林省長春十一中高考數(shù)學(xué)四模試卷含解析_第2頁](http://file4.renrendoc.com/view/d6c3c1a30b08c95bc9d7fc458795a9e9/d6c3c1a30b08c95bc9d7fc458795a9e92.gif)
![2021-2022學(xué)年吉林省長春十一中高考數(shù)學(xué)四模試卷含解析_第3頁](http://file4.renrendoc.com/view/d6c3c1a30b08c95bc9d7fc458795a9e9/d6c3c1a30b08c95bc9d7fc458795a9e93.gif)
![2021-2022學(xué)年吉林省長春十一中高考數(shù)學(xué)四模試卷含解析_第4頁](http://file4.renrendoc.com/view/d6c3c1a30b08c95bc9d7fc458795a9e9/d6c3c1a30b08c95bc9d7fc458795a9e94.gif)
![2021-2022學(xué)年吉林省長春十一中高考數(shù)學(xué)四模試卷含解析_第5頁](http://file4.renrendoc.com/view/d6c3c1a30b08c95bc9d7fc458795a9e9/d6c3c1a30b08c95bc9d7fc458795a9e95.gif)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022年高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他和高斯、牛頓并列被稱為世界三大數(shù)學(xué)家.據(jù)說,他自己覺得最為滿意的一個數(shù)學(xué)發(fā)現(xiàn)就是“圓柱內(nèi)切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個結(jié)論,要求后人在他的墓碑上刻著一個圓柱容器里放了一個球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.2.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直3.在等差數(shù)列中,,,若(),則數(shù)列的最大值是()A. B.C.1 D.34.已知且,函數(shù),若,則()A.2 B. C. D.5.如圖,內(nèi)接于圓,是圓的直徑,,則三棱錐體積的最大值為()A. B. C. D.6.如圖,網(wǎng)格紙是由邊長為1的小正方形構(gòu)成,若粗實線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.7.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.8.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點,F(xiàn)為C的焦點,若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.49.曲線上任意一點處的切線斜率的最小值為()A.3 B.2 C. D.110.一個頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數(shù)據(jù)在上的頻率為,則估計樣本在、內(nèi)的數(shù)據(jù)個數(shù)共有()A. B. C. D.11.已知純虛數(shù)滿足,其中為虛數(shù)單位,則實數(shù)等于()A. B.1 C. D.212.如圖,圓是邊長為的等邊三角形的內(nèi)切圓,其與邊相切于點,點為圓上任意一點,,則的最大值為()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.點是曲線()圖象上的一個定點,過點的切線方程為,則實數(shù)k的值為______.14.已知函數(shù),若方程的解為,(),則_______;_______.15.設(shè)數(shù)列的前項和為,且對任意正整數(shù),都有,則___16.如圖,某市一學(xué)校位于該市火車站北偏東方向,且,已知是經(jīng)過火車站的兩條互相垂直的筆直公路,CE,DF及圓弧都是學(xué)校道路,其中,,以學(xué)校為圓心,半徑為的四分之一圓弧分別與相切于點.當(dāng)?shù)卣顿Y開發(fā)區(qū)域發(fā)展經(jīng)濟,其中分別在公路上,且與圓弧相切,設(shè),的面積為.(1)求關(guān)于的函數(shù)解析式;(2)當(dāng)為何值時,面積為最小,政府投資最低?三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線和圓,傾斜角為45°的直線過拋物線的焦點,且與圓相切.(1)求的值;(2)動點在拋物線的準(zhǔn)線上,動點在上,若在點處的切線交軸于點,設(shè).求證點在定直線上,并求該定直線的方程.18.(12分)如圖所示,四棱錐P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E為AB的中點,底面四邊形ABCD滿足∠ADC=∠DCB=90°,AD=1,BC=1.(Ⅰ)求證:平面PDE⊥平面PAC;(Ⅱ)求直線PC與平面PDE所成角的正弦值;(Ⅲ)求二面角D﹣PE﹣B的余弦值.19.(12分)設(shè)的內(nèi)角、、的對邊長分別為、、.設(shè)為的面積,滿足.(1)求;(2)若,求的最大值.20.(12分)已知函數(shù).(1)當(dāng)時,解不等式;(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.21.(12分)在ABC中,角A,B,C的對邊分別為a,b,c,已知,(Ⅰ)求的大??;(Ⅱ)若,求面積的最大值.22.(10分)在平面直角坐標(biāo)系中,以為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于兩點.(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;(2)若點的極坐標(biāo)為,,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
設(shè)球的半徑為R,根據(jù)組合體的關(guān)系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設(shè)球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點睛】本題主要考查組合體的表面積和體積,還考查了對數(shù)學(xué)史了解,屬于基礎(chǔ)題.2.D【解析】
根據(jù)異面直線的判定定理、定義和性質(zhì),結(jié)合線面垂直的關(guān)系,對選項中的命題判斷.【詳解】A.假設(shè)直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據(jù)異面直線的性質(zhì)知,過只有唯一平面與平行,故正確.C.根據(jù)過一點有且只有一個平面與已知直線垂直知,故正確.D.根據(jù)異面直線的性質(zhì)知,過不一定能作一平面與垂直,故錯誤.故選:D【點睛】本題主要考查異面直線的定義,性質(zhì)以及線面關(guān)系,還考查了理解辨析的能力,屬于中檔題.3.D【解析】
在等差數(shù)列中,利用已知可求得通項公式,進而,借助函數(shù)的的單調(diào)性可知,當(dāng)時,取最大即可求得結(jié)果.【詳解】因為,所以,即,又,所以公差,所以,即,因為函數(shù),在時,單調(diào)遞減,且;在時,單調(diào)遞減,且.所以數(shù)列的最大值是,且,所以數(shù)列的最大值是3.故選:D.【點睛】本題考查等差數(shù)列的通項公式,考查數(shù)列與函數(shù)的關(guān)系,借助函數(shù)單調(diào)性研究數(shù)列最值問題,難度較易.4.C【解析】
根據(jù)分段函數(shù)的解析式,知當(dāng)時,且,由于,則,即可求出.【詳解】由題意知:當(dāng)時,且由于,則可知:,則,∴,則,則.即.故選:C.【點睛】本題考查分段函數(shù)的應(yīng)用,由分段函數(shù)解析式求自變量.5.B【解析】
根據(jù)已知證明平面,只要設(shè),則,從而可得體積,利用基本不等式可得最大值.【詳解】因為,所以四邊形為平行四邊形.又因為平面,平面,所以平面,所以平面.在直角三角形中,,設(shè),則,所以,所以.又因為,當(dāng)且僅當(dāng),即時等號成立,所以.故選:B.【點睛】本題考查求棱錐體積的最大值.解題方法是:首先證明線面垂直同,得棱錐的高,然后設(shè)出底面三角形一邊長為,用建立體積與邊長的函數(shù)關(guān)系,由基本不等式得最值,或由函數(shù)的性質(zhì)得最值.6.C【解析】
根據(jù)三視圖還原為幾何體,結(jié)合組合體的結(jié)構(gòu)特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個圓柱和一個長方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長方體的底面四邊形相鄰邊長分別為1,2,高為4,所以該幾何體的表面積,故選C.【點睛】本題主要考查三視圖的識別,利用三視圖還原成幾何體是求解關(guān)鍵,側(cè)重考查直觀想象和數(shù)學(xué)運算的核心素養(yǎng).7.C【解析】
作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運算求解能力,求解時注意球心的確定.8.C【解析】
方法一:設(shè),利用拋物線的定義判斷出是的中點,結(jié)合等腰三角形的性質(zhì)求得點的橫坐標(biāo),根據(jù)拋物線的定義求得,進而求得.方法二:設(shè)出兩點的橫坐標(biāo),由拋物線的定義,結(jié)合求得的關(guān)系式,聯(lián)立直線的方程和拋物線方程,寫出韋達定理,由此求得,進而求得.【詳解】方法一:由題意得拋物線的準(zhǔn)線方程為,直線恒過定點,過分別作于,于,連接,由,則,所以點為的中點,又點是的中點,則,所以,又所以由等腰三角形三線合一得點的橫坐標(biāo)為,所以,所以.方法二:拋物線的準(zhǔn)線方程為,直線由題意設(shè)兩點橫坐標(biāo)分別為,則由拋物線定義得又①②由①②得.故選:C【點睛】本小題主要考查拋物線的定義,考查直線和拋物線的位置關(guān)系,屬于中檔題.9.A【解析】
根據(jù)題意,求導(dǎo)后結(jié)合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據(jù)導(dǎo)數(shù)的幾何意義得:,即切線斜率,當(dāng)且僅當(dāng)?shù)忍柍闪?,所以上任意一點處的切線斜率的最小值為3.故選:A.【點睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用以及運用基本不等式求最值,考查計算能力.10.B【解析】
計算出樣本在的數(shù)據(jù)個數(shù),再減去樣本在的數(shù)據(jù)個數(shù)即可得出結(jié)果.【詳解】由題意可知,樣本在的數(shù)據(jù)個數(shù)為,樣本在的數(shù)據(jù)個數(shù)為,因此,樣本在、內(nèi)的數(shù)據(jù)個數(shù)為.故選:B.【點睛】本題考查利用頻數(shù)分布表計算頻數(shù),要理解頻數(shù)、樣本容量與頻率三者之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.11.B【解析】
先根據(jù)復(fù)數(shù)的除法表示出,然后根據(jù)是純虛數(shù)求解出對應(yīng)的的值即可.【詳解】因為,所以,又因為是純虛數(shù),所以,所以.故選:B.【點睛】本題考查復(fù)數(shù)的除法運算以及根據(jù)復(fù)數(shù)是純虛數(shù)求解參數(shù)值,難度較易.若復(fù)數(shù)為純虛數(shù),則有.12.C【解析】
建立坐標(biāo)系,寫出相應(yīng)的點坐標(biāo),得到的表達式,進而得到最大值.【詳解】以D點為原點,BC所在直線為x軸,AD所在直線為y軸,建立坐標(biāo)系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點的坐標(biāo)為:故得到故得到,故最大值為:2.故答案為C.【點睛】這個題目考查了向量標(biāo)化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問題.通過向量的運算,將問題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問題的一般方法.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
求出導(dǎo)函數(shù),由切線斜率為4即導(dǎo)數(shù)為4求出切點橫坐標(biāo),再由切線方程得縱坐標(biāo)后可求得.【詳解】設(shè),由題意,∴,,,即,∴,.故答案為:1.【點睛】本題考查導(dǎo)數(shù)的幾何意義,函數(shù)圖象某點處的切線的斜率就是該點處導(dǎo)數(shù)值.本題屬于基礎(chǔ)題.14.【解析】
求出在上的對稱軸,依據(jù)對稱性可得的值;由可得,依據(jù)可求出的值.【詳解】解:令,解得因為,所以關(guān)于對稱.則.由,則由可知,,又因為,所以,則,即故答案為:;.【點睛】本題考查了三角函數(shù)的對稱軸,考查了誘導(dǎo)公式,考查了同角三角函數(shù)的基本關(guān)系.本題的易錯點在于沒有正確判斷的取值范圍,導(dǎo)致求出.在求的對稱軸時,常用整體代入法,即令進行求解.15.【解析】
利用行列式定義,得到與的關(guān)系,賦值,即可求出結(jié)果。【詳解】由,令,得,解得?!军c睛】本題主要考查行列式定義的應(yīng)用。16.(1);(2).【解析】
(1)以點為坐標(biāo)原點建立如圖所示的平面直角坐標(biāo)系,則,在中,設(shè),又,故,,進而表示直線的方程,由直線與圓相切構(gòu)建關(guān)系化簡整理得,即可表示OA,OB,最后由三角形面積公式表示面積即可;(2)令,則,由輔助角公式和三角函數(shù)值域可求得t的取值范圍,進而對原面積的函數(shù)用含t的表達式換元,再令進行換元,并構(gòu)建新的函數(shù),由二次函數(shù)性質(zhì)即可求得最小值.【詳解】解:(1)以點為坐標(biāo)原點建立如圖所示的平面直角坐標(biāo)系,則,在中,設(shè),又,故,.所以直線的方程為,即.因為直線與圓相切,所以.因為點在直線的上方,所以,所以式可化為,解得.所以,.所以面積為.(2)令,則,且,所以,.令,,所以在上單調(diào)遞減.所以,當(dāng),即時,取得最大值,取最小值.答:當(dāng)時,面積為最小,政府投資最低.【點睛】本題考查三角函數(shù)的實際應(yīng)用,應(yīng)優(yōu)先結(jié)合實際建立合適的數(shù)學(xué)模型,再按模型求最值,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)點在定直線上.【解析】
(1)設(shè)出直線的方程為,由直線和圓相切的條件:,解得;(2)設(shè)出,運用導(dǎo)數(shù)求得切線的斜率,求得為切點的切線方程,再由向量的坐標(biāo)表示,可得在定直線上;【詳解】解:(1)依題意設(shè)直線的方程為,由已知得:圓的圓心,半徑,因為直線與圓相切,所以圓心到直線的距離,即,解得或(舍去).所以;(2)依題意設(shè),由(1)知拋物線方程為,所以,所以,設(shè),則以為切點的切線的斜率為,所以切線的方程為.令,,即交軸于點坐標(biāo)為,所以,,,.設(shè)點坐標(biāo)為,則,所以點在定直線上.【點睛】本題考查拋物線的方程和性質(zhì),直線與圓的位置關(guān)系的判斷,考查直線方程和圓方程的運用,以及切線方程的求法,考查化簡整理的運算能力,屬于綜合題.18.(Ⅰ)證明見解析(Ⅱ).(Ⅲ)﹣.【解析】
(Ⅰ)由題知,如圖以點為原點,直線分別為軸,建立空間直角坐標(biāo)系,計算,證明,從而平面PAC,即可得證;(Ⅱ)求解平面PDE的一個法向量,計算,即可得直線PC與平面PDE所成角的正弦值;(Ⅲ)求解平面PBE的一個法向量,計算,即可得二面角D﹣PE﹣B的余弦值.【詳解】(Ⅰ)PC⊥底面ABCD,,如圖以點為原點,直線分別為軸,建立空間直角坐標(biāo)系,則,,,,又,平面PAC,平面PDE,平面PDE⊥平面PAC;(Ⅱ)設(shè)為平面PDE的一個法向量,又,則,取,得,直線PC與平面PDE所成角的正弦值;(Ⅲ)設(shè)為平面PBE的一個法向量,又則,取,得,,二面角D﹣PE﹣B的余弦值﹣.【點睛】本題主要考查了平面與平面的垂直,直線與平面所成角的計算,二面角大小的求解,考查了空間向量在立體幾何中的應(yīng)用,考查了學(xué)生的空間想象能力與運算求解能力.19.(1);(2).【解析】
(1)根據(jù)條件形式選擇,然后利用余弦定理和正弦定理化簡,即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分別用角的三角函數(shù)值表示出,即可得到,再利用三角恒等變換,化簡為,即可求出最大值.【詳解】(1)∵,即,∴變形得:,整理得:,又,∴;(2)∵,∴,由正弦定理知,,∴,當(dāng)且僅當(dāng)時取最大值.故的最大值為.【點睛】本題主要考查正弦定理,余弦定理,三角形面積公式的應(yīng)用,以及利用三角恒等變換求函數(shù)的最值,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運算能力,屬于基礎(chǔ)題20.(1);(2).【解析】
(1)分類討論去絕對值,得到每段的解集,然后取并集得到答案.(2)先得到的取值范圍,判斷,為正,去掉絕對值,轉(zhuǎn)化為在時恒成立,得到,,在恒成立,從而得到的取值范圍.【詳解】(1)當(dāng)時,,由,得,即,或,即,或,即,綜上:或,所以不等式的解集為.(2),,因為,,所以,又,,,得.不等式恒成立,即在時恒成立,不等式恒成立必須,,解得.所以,解得,結(jié)合,所以,即的取值范圍為.【點睛】本題考查分類討論解絕對值不等式,含有絕對值的不等式的恒成立問題.屬于中檔題.21.(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球可伸縮紗窗行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球工業(yè)在線過程粘度計 (ILPV)行業(yè)調(diào)研及趨勢分析報告
- PVC貼膜板行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 喂鳥器項目可行性研究報告
- 大黃麻蟲片項目可行性研究報告
- 2025年度空調(diào)租賃服務(wù)合同范本
- 2025年度新型節(jié)能供水供電合同協(xié)議書范本
- 2025年度跨境股權(quán)轉(zhuǎn)讓操作指南合同樣本
- 2025年度環(huán)保產(chǎn)業(yè)公轉(zhuǎn)私借款合同范本
- 2025年度新型環(huán)保建筑材料采購與應(yīng)用合同
- 輸變電工程監(jiān)督檢查標(biāo)準(zhǔn)化清單-質(zhì)監(jiān)站檢查
- 2024-2025學(xué)年北京海淀區(qū)高二(上)期末生物試卷(含答案)
- 【超星學(xué)習(xí)通】馬克思主義基本原理(南開大學(xué))爾雅章節(jié)測試網(wǎng)課答案
- 2024年中國工業(yè)涂料行業(yè)發(fā)展現(xiàn)狀、市場前景、投資方向分析報告(智研咨詢發(fā)布)
- 化工企業(yè)重大事故隱患判定標(biāo)準(zhǔn)培訓(xùn)考試卷(后附答案)
- 工傷賠償授權(quán)委托書范例
- 食堂餐具炊具供貨服務(wù)方案
- 員工安全健康手冊
- 2024化工園區(qū)危險品運輸車輛停車場建設(shè)規(guī)范
- 自然科學(xué)基礎(chǔ)(小學(xué)教育專業(yè))全套教學(xué)課件
- 華為客服制度
評論
0/150
提交評論