吉林省新六所重點中學(xué)2021-2022學(xué)年高考數(shù)學(xué)押題試卷含解析_第1頁
吉林省新六所重點中學(xué)2021-2022學(xué)年高考數(shù)學(xué)押題試卷含解析_第2頁
吉林省新六所重點中學(xué)2021-2022學(xué)年高考數(shù)學(xué)押題試卷含解析_第3頁
吉林省新六所重點中學(xué)2021-2022學(xué)年高考數(shù)學(xué)押題試卷含解析_第4頁
吉林省新六所重點中學(xué)2021-2022學(xué)年高考數(shù)學(xué)押題試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022年高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在平行四邊形中,對角線與交于點,且,則()A. B.C. D.2.已知為定義在上的偶函數(shù),當(dāng)時,,則()A. B. C. D.3.“哥德巴赫猜想”是近代三大數(shù)學(xué)難題之一,其內(nèi)容是:一個大于2的偶數(shù)都可以寫成兩個質(zhì)數(shù)(素數(shù))之和,也就是我們所謂的“1+1”問題.它是1742年由數(shù)學(xué)家哥德巴赫提出的,我國數(shù)學(xué)家潘承洞、王元、陳景潤等在哥德巴赫猜想的證明中做出相當(dāng)好的成績.若將6拆成兩個正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為()A. B. C. D.4.某幾何體的三視圖如圖所示,其俯視圖是由一個半圓與其直徑組成的圖形,則此幾何體的體積是()A. B. C. D.5.正三棱錐底面邊長為3,側(cè)棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.6.已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.37.已知集合,,則的真子集個數(shù)為()A.1個 B.2個 C.3個 D.4個8.已知集合,,則()A. B.C. D.9.已知當(dāng),,時,,則以下判斷正確的是A. B.C. D.與的大小關(guān)系不確定10.已知橢圓+=1(a>b>0)與直線交于A,B兩點,焦點F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.11.若集合,,則()A. B. C. D.12.下圖所示函數(shù)圖象經(jīng)過何種變換可以得到的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位二、填空題:本題共4小題,每小題5分,共20分。13.如圖在三棱柱中,,,,點為線段上一動點,則的最小值為________.14.已知的展開式中項的系數(shù)與項的系數(shù)分別為135與,則展開式所有項系數(shù)之和為______.15.將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,則函數(shù)的最大值為______.16.如圖,機器人亮亮沿著單位網(wǎng)格,從地移動到地,每次只移動一個單位長度,則亮亮從移動到最近的走法共有____種.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在棱長為的正方形中,,分別為,邊上的中點,現(xiàn)以為折痕將點旋轉(zhuǎn)至點的位置,使得為直二面角.(1)證明:;(2)求與面所成角的正弦值.18.(12分)已知橢圓的左頂點為,左、右焦點分別為,離心率為,是橢圓上的一個動點(不與左、右頂點重合),且的周長為6,點關(guān)于原點的對稱點為,直線交于點.(1)求橢圓方程;(2)若直線與橢圓交于另一點,且,求點的坐標(biāo).19.(12分)已知函數(shù).(Ⅰ)當(dāng)時,求函數(shù)在上的值域;(Ⅱ)若函數(shù)在上單調(diào)遞減,求實數(shù)的取值范圍.20.(12分)如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點.(Ⅰ)求證:平面平面;(ⅠⅠ)求直線與平面所成的角的正弦值.21.(12分)已知函數(shù).(1)當(dāng)時,解關(guān)于的不等式;(2)若對任意,都存在,使得不等式成立,求實數(shù)的取值范圍.22.(10分)已知三棱錐中,為等腰直角三角形,,設(shè)點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

畫出圖形,以為基底將向量進行分解后可得結(jié)果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【點睛】應(yīng)用平面向量基本定理應(yīng)注意的問題(1)只要兩個向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時,合理選擇基底會給解題帶來方便.(2)利用已知向量表示未知向量,實質(zhì)就是利用平行四邊形法則或三角形法則進行向量的加減運算或數(shù)乘運算.2.D【解析】

判斷,利用函數(shù)的奇偶性代入計算得到答案.【詳解】∵,∴.故選:【點睛】本題考查了利用函數(shù)的奇偶性求值,意在考查學(xué)生對于函數(shù)性質(zhì)的靈活運用.3.A【解析】

列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點睛】本題主要考查了古典概型,基本事件,屬于容易題.4.C【解析】由三視圖可知,該幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高為2的圓錐的一半,所以,半圓柱的體積為,上部半圓錐的體積為,所以該幾何體的體積為,故應(yīng)選.5.D【解析】

由側(cè)棱與底面所成角及底面邊長求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側(cè)棱與底面所成的角,即=60°,由底面邊長為3得,∴.正三棱錐外接球球心必在上,設(shè)球半徑為,則由得,解得,∴.故選:D.【點睛】本題考查球體積,考查正三棱錐與外接球的關(guān)系.掌握正棱錐性質(zhì)是解題關(guān)鍵.6.A【解析】

由點到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點睛】本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎(chǔ).7.C【解析】

求出的元素,再確定其真子集個數(shù).【詳解】由,解得或,∴中有兩個元素,因此它的真子集有3個.故選:C.【點睛】本題考查集合的子集個數(shù)問題,解題時可先確定交集中集合的元素個數(shù),解題關(guān)鍵是對集合元素的認(rèn)識,本題中集合都是曲線上的點集.8.C【解析】

求出集合,計算出和,即可得出結(jié)論.【詳解】,,,.故選:C.【點睛】本題考查交集和并集的計算,考查計算能力,屬于基礎(chǔ)題.9.C【解析】

由函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用得:設(shè),求得可得為增函數(shù),又,,時,根據(jù)條件得,即可得結(jié)果.【詳解】解:設(shè),則,即為增函數(shù),又,,,,即,所以,所以.故選:C.【點睛】本題考查了函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用,屬中檔題.10.A【解析】

聯(lián)立直線與橢圓方程求出交點A,B兩點,利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設(shè)A(0,a),B(-b,0),由題意可知,·=0,因為,,由平面向量垂直的坐標(biāo)表示可得,,因為,所以a2-c2=ac,兩邊同時除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點睛】本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標(biāo)表示;考查運算求解能力和知識遷移能力;利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式是求解本題的關(guān)鍵;屬于中檔題、??碱}型.11.A【解析】

用轉(zhuǎn)化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點睛】本題考查了并集及其運算,分式不等式的解法,熟練掌握并集的定義是解本題的關(guān)鍵.屬于基礎(chǔ)題.12.D【解析】

根據(jù)函數(shù)圖像得到函數(shù)的一個解析式為,再根據(jù)平移法則得到答案.【詳解】設(shè)函數(shù)解析式為,根據(jù)圖像:,,故,即,,,取,得到,函數(shù)向右平移個單位得到.故選:.【點睛】本題考查了根據(jù)函數(shù)圖像求函數(shù)解析式,三角函數(shù)平移,意在考查學(xué)生對于三角函數(shù)知識的綜合應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

把繞著進行旋轉(zhuǎn),當(dāng)四點共面時,運用勾股定理即可求得的最小值.【詳解】將以為軸旋轉(zhuǎn)至與面在一個平面,展開圖如圖所示,若,,三點共線時最小為,為直角三角形,故答案為:【點睛】本題考查了空間幾何體的翻折,平面內(nèi)兩點之間線段最短,解直角三角形進行求解,考查了空間想象能力和計算能力,屬于中檔題.14.64【解析】

由題意先求得的值,再令求出展開式中所有項的系數(shù)和.【詳解】的展開式中項的系數(shù)與項的系數(shù)分別為135與,,,由兩式可組成方程組,解得或,令,求得展開式中所有的系數(shù)之和為.故答案為:64【點睛】本題考查了二項式定理,考查了賦值法求多項式展開式的系數(shù)和,屬于基礎(chǔ)題.15.【解析】

由三角函數(shù)圖象相位變換后表達函數(shù)解析式,再利用三角恒等變換與輔助角公式整理的表達式,進而由三角函數(shù)值域求得最大值.【詳解】將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,則所以,當(dāng)函數(shù)最大,最大值為故答案為:【點睛】本題考查表示三角函數(shù)圖象平移后圖象的解析式,還考查了利用三角恒等變換化簡函數(shù)式并求最值,屬于簡單題.16.【解析】

分三步來考查,先從到,再從到,最后從到,分別計算出三個步驟中對應(yīng)的走法種數(shù),然后利用分步乘法計數(shù)原理可得出結(jié)果.【詳解】分三步來考查:①從到,則亮亮要移動兩步,一步是向右移動一個單位,一步是向上移動一個單位,此時有種走法;②從到,則亮亮要移動六步,其中三步是向右移動一個單位,三步是向上移動一個單位,此時有種走法;③從到,由①可知有種走法.由分步乘法計數(shù)原理可知,共有種不同的走法.故答案為:.【點睛】本題考查格點問題的處理,考查分步乘法計數(shù)原理和組合計數(shù)原理的應(yīng)用,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見詳解;(2)【解析】

(1)在折疊前的正方形ABCD中,作出對角線AC,BD,由正方形性質(zhì)知,又//,則于點H,則由直二面角可知面,故.又,則面,故命題得證;(2)作出線面角,在直角三角形中求解該角的正弦值.【詳解】解:(1)證明:在正方形中,連結(jié)交于.因為//,故可得,即又旋轉(zhuǎn)不改變上述垂直關(guān)系,且平面,面,又面,所以(2)因為為直二面角,故平面平面,又其交線為,且平面,故可得底面,連結(jié),則即為與面所成角,連結(jié)交于,在中,,在中,.所以與面所成角的正弦值為.【點睛】本題考查了線面垂直的證明與性質(zhì),利用定義求線面角,屬于中檔題.18.(1);(2)或【解析】

(1)根據(jù)的周長為,結(jié)合離心率,求出,即可求出方程;(2)設(shè),則,求出直線方程,若斜率不存在,求出坐標(biāo),直接驗證是否滿足題意,若斜率存在,求出其方程,與直線方程聯(lián)立,求出點坐標(biāo),根據(jù)和三點共線,將點坐標(biāo)用表示,坐標(biāo)代入橢圓方程,即可求解.【詳解】(1)因為橢圓的離心率為,的周長為6,設(shè)橢圓的焦距為,則解得,,,所以橢圓方程為.(2)設(shè),則,且,所以的方程為①.若,則的方程為②,由對稱性不妨令點在軸上方,則,,聯(lián)立①,②解得即.的方程為,代入橢圓方程得,整理得,或,.,不符合條件.若,則的方程為,即③.聯(lián)立①,③可解得所以.因為,設(shè)所以,即.又因為位于軸異側(cè),所以.因為三點共線,即應(yīng)與共線,所以,即,所以,又,所以,解得,所以,所以點的坐標(biāo)為或.【點睛】本題考查橢圓的標(biāo)準(zhǔn)方程以及應(yīng)用、直線與橢圓的位置關(guān)系,考查分類討論思想和計算求解能力,屬于較難題.19.(Ⅰ)(Ⅱ)【解析】

(Ⅰ)把代入,可得,令,求出其在上的值域,利用對數(shù)函數(shù)的單調(diào)性即可求解.(Ⅱ)根據(jù)對數(shù)函數(shù)的單調(diào)性可得在上單調(diào)遞增,再利用二次函數(shù)的圖像與性質(zhì)可得解不等式組即可求解.【詳解】(Ⅰ)當(dāng)時,,此時函數(shù)的定義域為.因為函數(shù)的最小值為.最大值為,故函數(shù)在上的值域為;(Ⅱ)因為函數(shù)在上單調(diào)遞減,故在上單調(diào)遞增,則解得,綜上所述,實數(shù)的取值范圍.【點睛】本題主要考查了利用對數(shù)函數(shù)的單調(diào)性求值域、利用對數(shù)型函數(shù)的單調(diào)區(qū)間求參數(shù)的取值范圍以及二次函數(shù)的圖像與性質(zhì),屬于中檔題.20.(Ⅰ)詳見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接交于,得,所以面,又,得面,即可利用面面平行的判定定理,證得結(jié)論;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點,建立空間直角坐標(biāo)系,求的平面的一個法向量,利用向量和向量夾角公式,即可求解與平面所成角的正弦值.試題解析:(Ⅰ)連接BD交AC于O,易知O是BD的中點,故OG//BE,BE面BEF,OG在面BEF外,所以O(shè)G//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC與OG相交于點O,面ACG有兩條相交直線與面BEF平行,故面ACG∥面BEF;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點,分別以O(shè)C、OD、OF為x、y、z軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè)面ABF的法向量為,依題意有,,令,,,,,直線AD與面ABF成的角的正弦值是.21.(1);(2).【解析】

(1)分類討論去絕對值號,然后解不等式即可.(2)因為對任意,都存在,使得不等式成立,等價于,根據(jù)絕對值不等式易求,根據(jù)二次函數(shù)易求,然后解不等式即可.【詳解】解:(1)當(dāng)時,,則當(dāng)時,由得,,解得;當(dāng)時,恒成立;當(dāng)時,由得,,解得.所以的解集為(2)對任意,都存在,得成立,等價于.因為,所以,且|,①當(dāng)時,①式等號成立,即.又因為,②當(dāng)時,②式等號成立,即.所以,即即的取值范圍為:.【點睛】知識:考查含兩個絕對值號的不等式的解法;恒成立問題和存在性問題求參變數(shù)的范圍問題;能力:分析問題和解決問題的能力以及運算求解能力;中檔題.22.(1)證明見解析;(2)【解析】

(1)連接交于點,連接,通過證,并說明平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論