版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ChapterTwentyCostMinimization成本最小化ChapterTwentyCostMinimizatio1StructureThecostminimizationproblemAveragecostsReturnstoscaleandtotalandaveragecostsShortrunandlongruncostsStructureThecostminimization2CostMinimizationAfirmisacost-minimizerifitproducesanygivenoutputlevely30atsmallestpossibletotalcost.c(y)denotesthefirm’ssmallestpossibletotalcostforproducingyunitsofoutput.c(y)isthefirm’stotalcostfunction(總成本函數(shù)).CostMinimizationAfirmisac3CostMinimizationWhenthefirmfacesgiveninputpricesw=(w1,w2,…,wn)thetotalcostfunctionwillbewrittenas
c(w1,…,wn,y).CostMinimizationWhenthefirm4TheCost-MinimizationProblemConsiderafirmusingtwoinputstomakeoneoutput.Theproductionfunctionis
y=f(x1,x2).Taketheoutputlevely30asgiven.Giventheinputpricesw1andw2,thecostofaninputbundle(x1,x2)isw1x1+w2x2.TheCost-MinimizationProblemC5TheCost-MinimizationProblemForgivenw1,w2andy,thefirm’scost-minimizationproblemistosolve
subjecttoTheCost-MinimizationProblemF6TheCost-MinimizationProblemThelevelsx1*(w1,w2,y)andx1*(w1,w2,y)intheleast-costlyinputbundlearethefirm’sconditionaldemandsforinputs1and2(條件要素需求).The(smallestpossible)totalcostforproducingyoutputunitsisthereforeTheCost-MinimizationProblemT7ConditionalInputDemandsGivenw1,w2andy,howistheleastcostlyinputbundlelocated?Andhowisthetotalcostfunction(成本函數(shù))computed?ConditionalInputDemandsGiven8Iso-costLines(等成本線)Acurvethatcontainsalloftheinputbundlesthatcostthesameamountisaniso-costcurve.E.g.,givenw1andw2,the$100iso-costlinehastheequationIso-costLines(等成本線)Acurvet9Iso-costLinesGenerally,givenw1andw2,theequationofthe$ciso-costlineis
i.e.
Slopeis-w1/w2.Iso-costLinesGenerally,given10Iso-costLinesc’ow1x1+w2x2c”ow1x1+w2x2c’<c”x1x2Slopes=-w1/w2.Iso-costLinesc’ow1x1+w2x2c”11They’-OutputUnitIsoquantx1x2Allinputbundlesyieldingy’units
ofoutput.Whichisthecheapest?f(x1,x2)oy’They’-OutputUnitIsoquantx1x12TheCost-MinimizationProblemx1x2Allinputbundlesyieldingy’units
ofoutput.Whichisthecheapest?f(x1,x2)oy’TheCost-MinimizationProblemx13TheCost-MinimizationProblemx1x2Allinputbundlesyieldingy’units
ofoutput.Whichisthecheapest?f(x1,x2)oy’x1*x2*TheCost-MinimizationProblemx14TheCost-MinimizationProblemx1x2f(x1,x2)oy’x1*x2*Ataninteriorcost-mininputbundle:
(a)TheCost-MinimizationProblemx15TheCost-MinimizationProblemx1x2f(x1,x2)oy’x1*x2*Ataninteriorcost-mininputbundle:
(a)and
(b)slopeofisocost=slopeof
isoquant;i.e.TheCost-MinimizationProblemx16ACobb-DouglasExampleofCostMinimizationAfirm’sCobb-Douglasproductionfunctionis
Inputpricesarew1andw2.Whatarethefirm’sconditionalinputdemandfunctions?ACobb-DouglasExampleofCost17ACobb-DouglasExampleofCostMinimizationAttheinputbundle(x1*,x2*)whichminimizes
thecostofproducingyoutputunits:(a)
(b)andACobb-DouglasExampleofCost18ACobb-DouglasExampleofCostMinimization(a)(b)From(b),Nowsubstituteinto(a)togetSoisthefirm’sconditional
demandforinput1.ACobb-DouglasExampleofCost19ACobb-DouglasExampleofCostMinimizationisthefirm’sconditionaldemandforinput2.SinceandACobb-DouglasExampleofCost20ACobb-DouglasExampleofCostMinimizationSothecheapestinputbundleyieldingy
outputunitsisACobb-DouglasExampleofCost21Fixedw1andw2.ConditionalInputDemandCurvesFixedw1andw2.ConditionalIn22Fixedw1andw2.ConditionalInputDemandCurvesFixedw1andw2.ConditionalIn23Fixedw1andw2.ConditionalInputDemandCurvesFixedw1andw2.ConditionalIn24Fixedw1andw2.ConditionalInputDemandCurvesFixedw1andw2.ConditionalIn25Fixedw1andw2.ConditionalInputDemandCurvesoutput
expansion
pathCond.demand
for
input2
Cond.
demand
forinput1Fixedw1andw2.ConditionalIn26ACobb-DouglasExampleofCostMinimizationFortheproductionfunctionthecheapestinputbundleyieldingyoutput
unitsisACobb-DouglasExampleofCost27ACobb-DouglasExampleofCostMinimizationSothefirm’stotalcostfunctionisACobb-DouglasExampleofCost28APerfectComplementsExampleofCostMinimizationThefirm’sproductionfunctionis
Inputpricesw1andw2aregiven.Whatarethefirm’sconditionaldemandsforinputs1and2?Whatisthefirm’stotalcostfunction?APerfectComplementsExample29APerfectComplementsExampleofCostMinimizationx1x2x1*=y/4x2*=y4x1=x2min{4x1,x2}oy’Whereistheleastcostlyinputbundleyieldingy’outputunits?APerfectComplementsExample30APerfectComplementsExampleofCostMinimizationThefirm’sproductionfunctionisandtheconditionalinputdemandsareandSothefirm’stotalcostfunctionisAPerfectComplementsExample31AverageTotalProductionCostsForpositiveoutputlevelsy,afirm’saveragetotalcostofproducingyunitsisAverageTotalProductionCosts32Returns-to-ScaleandAv.TotalCostsThereturns-to-scalepropertiesofafirm’stechnologydeterminehowaverageproductioncostschangewithoutputlevel.Ourfirmispresentlyproducingy’outputunits.Howdoesthefirm’saverageproductioncostchangeifitinsteadproduces2y’unitsofoutput?Returns-to-ScaleandAv.Total33ConstantReturns-to-ScaleandAverageTotalCostsIfafirm’stechnologyexhibitsconstantreturns-to-scalethendoublingitsoutputlevelfromy’to2y’requiresdoublingallinputlevels.Totalproductioncostdoubles.Averageproductioncostdoesnotchange.ConstantReturns-to-Scaleand34DecreasingReturns-to-ScaleandAverageTotalCostsIfafirm’stechnologyexhibitsdecreasingreturns-to-scalethendoublingitsoutputlevelfromy’to2y’requiresmorethandoublingallinputlevels.Totalproductioncostmorethandoubles.Averageproductioncostincreases.DecreasingReturns-to-Scalean35IncreasingReturns-to-ScaleandAverageTotalCostsIfafirm’stechnologyexhibitsincreasingreturns-to-scalethendoublingitsoutputlevelfromy’to2y’requireslessthandoublingallinputlevels.Totalproductioncostlessthandoubles.Averageproductioncostdecreases.IncreasingReturns-to-Scalean36Returns-to-ScaleandAv.TotalCostsy$/outputunitconstantr.t.s.decreasingr.t.s.increasingr.t.s.AC(y)Returns-to-ScaleandAv.Total37Returns-to-ScaleandTotalCostsWhatdoesthisimplyfortheshapesoftotalcostfunctions?Returns-to-ScaleandTotalCos38Returns-to-ScaleandTotalCostsy$c(y)y’2y’c(y’)c(2y’)Slope=c(2y’)/2y’=AC(2y’).Slope=c(y’)/y’=AC(y’).Av.costincreaseswithyifthefirm’s
technologyexhibitsdecreasingr.t.s.Returns-to-ScaleandTotalCos39Returns-to-ScaleandTotalCostsy$c(y)y’2y’c(y’)c(2y’)Slope=c(2y’)/2y’=AC(2y’).Slope=c(y’)/y’=AC(y’).Av.costdecreaseswithyifthefirm’s
technologyexhibitsincreasingr.t.s.Returns-to-ScaleandTotalCos40Returns-to-ScaleandTotalCostsy$c(y)y’2y’c(y’)c(2y’)=2c(y’)Slope=c(2y’)/2y’=2c(y’)/2y’=c(y’)/y’soAC(y’)=AC(2y’).Av.costisconstantwhenthefirm’s
technologyexhibitsconstantr.t.s.Returns-to-ScaleandTotalCos41Short-Run&Long-RunTotalCostsInthelong-runafirmcanvaryallofitsinputlevels.Considerafirmthatcannotchangeitsinput2levelfromx2’units.Howdoestheshort-runtotalcostofproducingyoutputunitscomparetothelong-runtotalcostofproducingyunitsofoutput?Short-Run&Long-RunTotalCos42Short-Run&Long-RunTotalCostsThelong-runcost-minimizationproblemis
Theshort-runcost-minimizationproblemissubjecttosubjecttoShort-Run&Long-RunTotalCos43Short-Run&Long-RunTotalCostsTblemisthelong-runproblemsubjecttotheextraconstraintthatx2=x2’.Ifthelong-runchoiceforx2wasx2’thentheextraconstraintx2=x2’isnotreallyaconstraintatallandsothelong-runandshort-runtotalcostsofproducingyoutputunitsarethesame.Short-Run&Long-RunTotalCos44Short-Run&Long-RunTotalCostsBut,ifthelong-runchoiceforx2
1x2”thentheextraconstraintx2=x2”preventsthefirminthisshort-runfromachievingitslong-runproductioncost,causingtheshort-runtotalcosttoexceedthelong-runtotalcostofproducingyoutputunits.Short-Run&Long-RunTotalCos45Short-Run&Long-RunTotalCostsx1x2Considerthreeoutputlevels.Short-Run&Long-RunTotalCos46Short-Run&Long-RunTotalCostsx1x2Inthelong-runwhenthefirm
isfreetochoosebothx1and
x2,theleast-costlyinput
bundlesare...Short-Run&Long-RunTotalCos47Short-Run&Long-RunTotalCostsx1x2Long-run
output
expansion
pathShort-Run&Long-RunTotalCos48Short-Run&Long-RunTotalCostsx1x2Long-run
output
expansion
pathLong-runcostsare:Short-Run&Long-RunTotalCos49Short-Run&Long-RunTotalCostsNowsupposethefirmbecomessubjecttotheshort-runconstraintthatx2=x2”.Short-Run&Long-RunTotalCos50Short-Run&Long-RunTotalCostsx1x2Short-run
output
expansion
pathLong-runcostsare:Short-Run&Long-RunTotalCos51Short-Run&Long-RunTotalCostsx1x2Short-run
output
expansion
pathLong-runcostsare:Short-runcostsare:Short-Run&Long-RunTotalCos52Short-Run&Long-RunTotalCostsx1x2Short-run
output
expansion
pathLong-runcostsare:Short-runcostsare:Short-Run&Long-RunTotalCos53Short-Run&Long-RunTotalCostsx1x2Short-run
output
expansion
pathLong-runcostsare:Short-runcostsare:Short-Run&Long-RunTotalCos54Short-Run&Long-RunTotalCostsShort-runtotalcostexceedslong-runtotalcostexceptfortheoutputlevelwheretheshort-runinputlevelrestrictionisthelong-runinputlevelchoice.Thissaysthatthelong-runtotalcostcurvealwayshasonepointincommonwithanyparticularshort-runtotalcostcurve.Short-Run&Long-RunTotalCos55Short-Run&Long-RunTotalCostsy$c(y)cs(y)Ashort-runtotalcostcurvealwayshas
onepointincommonwiththelong-run
totalcostcurve,andiselsewherehigher
thanthelong-runtotalcostcurve.Short-Run&Long-RunTotalCos56ChapterTwentyCostMinimization成本最小化ChapterTwentyCostMinimizatio57StructureThecostminimizationproblemAveragecostsReturnstoscaleandtotalandaveragecostsShortrunandlongruncostsStructureThecostminimization58CostMinimizationAfirmisacost-minimizerifitproducesanygivenoutputlevely30atsmallestpossibletotalcost.c(y)denotesthefirm’ssmallestpossibletotalcostforproducingyunitsofoutput.c(y)isthefirm’stotalcostfunction(總成本函數(shù)).CostMinimizationAfirmisac59CostMinimizationWhenthefirmfacesgiveninputpricesw=(w1,w2,…,wn)thetotalcostfunctionwillbewrittenas
c(w1,…,wn,y).CostMinimizationWhenthefirm60TheCost-MinimizationProblemConsiderafirmusingtwoinputstomakeoneoutput.Theproductionfunctionis
y=f(x1,x2).Taketheoutputlevely30asgiven.Giventheinputpricesw1andw2,thecostofaninputbundle(x1,x2)isw1x1+w2x2.TheCost-MinimizationProblemC61TheCost-MinimizationProblemForgivenw1,w2andy,thefirm’scost-minimizationproblemistosolve
subjecttoTheCost-MinimizationProblemF62TheCost-MinimizationProblemThelevelsx1*(w1,w2,y)andx1*(w1,w2,y)intheleast-costlyinputbundlearethefirm’sconditionaldemandsforinputs1and2(條件要素需求).The(smallestpossible)totalcostforproducingyoutputunitsisthereforeTheCost-MinimizationProblemT63ConditionalInputDemandsGivenw1,w2andy,howistheleastcostlyinputbundlelocated?Andhowisthetotalcostfunction(成本函數(shù))computed?ConditionalInputDemandsGiven64Iso-costLines(等成本線)Acurvethatcontainsalloftheinputbundlesthatcostthesameamountisaniso-costcurve.E.g.,givenw1andw2,the$100iso-costlinehastheequationIso-costLines(等成本線)Acurvet65Iso-costLinesGenerally,givenw1andw2,theequationofthe$ciso-costlineis
i.e.
Slopeis-w1/w2.Iso-costLinesGenerally,given66Iso-costLinesc’ow1x1+w2x2c”ow1x1+w2x2c’<c”x1x2Slopes=-w1/w2.Iso-costLinesc’ow1x1+w2x2c”67They’-OutputUnitIsoquantx1x2Allinputbundlesyieldingy’units
ofoutput.Whichisthecheapest?f(x1,x2)oy’They’-OutputUnitIsoquantx1x68TheCost-MinimizationProblemx1x2Allinputbundlesyieldingy’units
ofoutput.Whichisthecheapest?f(x1,x2)oy’TheCost-MinimizationProblemx69TheCost-MinimizationProblemx1x2Allinputbundlesyieldingy’units
ofoutput.Whichisthecheapest?f(x1,x2)oy’x1*x2*TheCost-MinimizationProblemx70TheCost-MinimizationProblemx1x2f(x1,x2)oy’x1*x2*Ataninteriorcost-mininputbundle:
(a)TheCost-MinimizationProblemx71TheCost-MinimizationProblemx1x2f(x1,x2)oy’x1*x2*Ataninteriorcost-mininputbundle:
(a)and
(b)slopeofisocost=slopeof
isoquant;i.e.TheCost-MinimizationProblemx72ACobb-DouglasExampleofCostMinimizationAfirm’sCobb-Douglasproductionfunctionis
Inputpricesarew1andw2.Whatarethefirm’sconditionalinputdemandfunctions?ACobb-DouglasExampleofCost73ACobb-DouglasExampleofCostMinimizationAttheinputbundle(x1*,x2*)whichminimizes
thecostofproducingyoutputunits:(a)
(b)andACobb-DouglasExampleofCost74ACobb-DouglasExampleofCostMinimization(a)(b)From(b),Nowsubstituteinto(a)togetSoisthefirm’sconditional
demandforinput1.ACobb-DouglasExampleofCost75ACobb-DouglasExampleofCostMinimizationisthefirm’sconditionaldemandforinput2.SinceandACobb-DouglasExampleofCost76ACobb-DouglasExampleofCostMinimizationSothecheapestinputbundleyieldingy
outputunitsisACobb-DouglasExampleofCost77Fixedw1andw2.ConditionalInputDemandCurvesFixedw1andw2.ConditionalIn78Fixedw1andw2.ConditionalInputDemandCurvesFixedw1andw2.ConditionalIn79Fixedw1andw2.ConditionalInputDemandCurvesFixedw1andw2.ConditionalIn80Fixedw1andw2.ConditionalInputDemandCurvesFixedw1andw2.ConditionalIn81Fixedw1andw2.ConditionalInputDemandCurvesoutput
expansion
pathCond.demand
for
input2
Cond.
demand
forinput1Fixedw1andw2.ConditionalIn82ACobb-DouglasExampleofCostMinimizationFortheproductionfunctionthecheapestinputbundleyieldingyoutput
unitsisACobb-DouglasExampleofCost83ACobb-DouglasExampleofCostMinimizationSothefirm’stotalcostfunctionisACobb-DouglasExampleofCost84APerfectComplementsExampleofCostMinimizationThefirm’sproductionfunctionis
Inputpricesw1andw2aregiven.Whatarethefirm’sconditionaldemandsforinputs1and2?Whatisthefirm’stotalcostfunction?APerfectComplementsExample85APerfectComplementsExampleofCostMinimizationx1x2x1*=y/4x2*=y4x1=x2min{4x1,x2}oy’Whereistheleastcostlyinputbundleyieldingy’outputunits?APerfectComplementsExample86APerfectComplementsExampleofCostMinimizationThefirm’sproductionfunctionisandtheconditionalinputdemandsareandSothefirm’stotalcostfunctionisAPerfectComplementsExample87AverageTotalProductionCostsForpositiveoutputlevelsy,afirm’saveragetotalcostofproducingyunitsisAverageTotalProductionCosts88Returns-to-ScaleandAv.TotalCostsThereturns-to-scalepropertiesofafirm’stechnologydeterminehowaverageproductioncostschangewithoutputlevel.Ourfirmispresentlyproducingy’outputunits.Howdoesthefirm’saverageproductioncostchangeifitinsteadproduces2y’unitsofoutput?Returns-to-ScaleandAv.Total89ConstantReturns-to-ScaleandAverageTotalCostsIfafirm’stechnologyexhibitsconstantreturns-to-scalethendoublingitsoutputlevelfromy’to2y’requiresdoublingallinputlevels.Totalproductioncostdoubles.Averageproductioncostdoesnotchange.ConstantReturns-to-Scaleand90DecreasingReturns-to-ScaleandAverageTotalCostsIfafirm’stechnologyexhibitsdecreasingreturns-to-scalethendoublingitsoutputlevelfromy’to2y’requiresmorethandoublingallinputlevels.Totalproductioncostmorethandoubles.Averageproductioncostincreases.DecreasingReturns-to-Scalean91IncreasingReturns-to-ScaleandAverageTotalCostsIfafirm’stechnologyexhibitsincreasingreturns-to-scalethendoublingitsoutputlevelfromy’to2y’requireslessthandoublingallinputlevels.Totalproductioncostlessthandoubles.Averageproductioncostdecreases.IncreasingReturns-to-Scalean92Returns-to-ScaleandAv.TotalCostsy$/outputunitconstantr.t.s.decreasingr.t.s.increasingr.t.s.AC(y)Returns-to-ScaleandAv.Total93Returns-to-ScaleandTotalCostsWhatdoesthisimplyfortheshapesoftotalcostfunctions?Returns-to-ScaleandTotalCos94Returns-to-ScaleandTotalCostsy$c(y)y’2y’c(y’)c(2y’)Slope=c(2y’)/2y’=AC(2y’).Slope=c(y’)/y’=AC(y’).Av.costincreaseswithyifthefirm’s
technologyexhibitsdecreasingr.t.s.Returns-to-ScaleandTotalCos95Returns-to-ScaleandTotalCostsy$c(y)y’2y’c(y’)c(2y’)Slope=c(2y’)/2y’=AC(2y’).Slope=c(y’)/y’=AC(y’).Av.costdecreaseswithyifthefirm’s
technologyexhibitsincreasingr.t.s.Returns-to-ScaleandTotalCos96Returns-to-ScaleandTotalCostsy$c(y)y’2y’c(y’)c(2y’)=2c(y’)Slope=c(2y’)/2y’=2c(y’)/2y’=c(y’)/y’soAC(y’)=AC(2y’).Av.costisconstantwhenthefirm’s
technologyexhibitsconstantr.t.s.Returns-to-ScaleandTotalCos97Short-Run&Long-RunTotalCostsInthelong-runafirmcanvaryallofitsinputlevels.Considerafirmthatcannotchangeitsinput2levelfromx2’units.Howdoestheshort-runtotalcostofproducingyoutputunitscomparetothelong-runtotalcostofproducingyunitsofoutput?Short-Run&Long-RunTotalCos98Short-Run&Long-RunTotalCostsThelong-runcost-minimizationproblemis
Theshort-runcost-minimizationproblemissubjecttosubjecttoShort-Run&Long-RunTotalCos99Short-Run&Long-RunTotalCostsTblemisthelong-runproblemsubjecttotheextraconstraintthatx2=x2’.Ifthelong-runchoiceforx2wasx2’thentheextraconstraintx2=x2’isnotreallyaconstraintatallandsothelong-runandshort-runtotalcostsofproducingyoutputunitsarethesame.Short-Run&Long-RunTot
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年鋁合金型材生產(chǎn)設(shè)備租賃及售后服務(wù)合同3篇
- 庭院燈施工方案
- 2025年度校園校車(chē)租賃服務(wù)合同范本6篇
- 2025年度文化創(chuàng)意產(chǎn)業(yè)信托借款合同范本4篇
- 2024智能家居系統(tǒng)集成與運(yùn)維管理協(xié)議
- 2025年度板材行業(yè)知識(shí)產(chǎn)權(quán)保護(hù)與維權(quán)合同3篇
- 2025年度水電站電力負(fù)荷管理權(quán)轉(zhuǎn)讓合同3篇
- 橋梁鉸縫施工方案
- 2025版跨省搬家貨運(yùn)代理服務(wù)合同樣本3篇
- 二零二五年度個(gè)人現(xiàn)金貸還款協(xié)議3篇
- 《高中體育與健康》考試復(fù)習(xí)題庫(kù)及答案
- 高空拋物安全宣傳教育課件
- 供應(yīng)鏈ESG管理策略
- 2024秋期國(guó)家開(kāi)放大學(xué)本科《納稅籌劃》一平臺(tái)在線形考(形考任務(wù)一至五)試題及答案
- 紙巾合同范本
- 四川省德陽(yáng)市2025屆數(shù)學(xué)三年級(jí)第一學(xué)期期末聯(lián)考模擬試題含解析
- 2024年平面設(shè)計(jì)師技能及理論知識(shí)考試題庫(kù)(附含答案)
- 2024年高考真題-英語(yǔ)(新高考Ⅰ卷) 含解析
- 2023-2024年6月廣東省普通高中學(xué)業(yè)水平生物考試及答案
- 鐵路技術(shù)管理規(guī)程-20220507141239
- 植物學(xué)智慧樹(shù)知到答案2024年浙江大學(xué)
評(píng)論
0/150
提交評(píng)論