煙臺市2021-2022學年中考押題數(shù)學預測卷含解析及點睛_第1頁
煙臺市2021-2022學年中考押題數(shù)學預測卷含解析及點睛_第2頁
煙臺市2021-2022學年中考押題數(shù)學預測卷含解析及點睛_第3頁
煙臺市2021-2022學年中考押題數(shù)學預測卷含解析及點睛_第4頁
煙臺市2021-2022學年中考押題數(shù)學預測卷含解析及點睛_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖是一個由4個相同的正方體組成的立體圖形,它的主視圖是()A. B. C. D.2.已知:二次函數(shù)y=ax2+bx+c(a≠1)的圖象如圖所示,下列結論中:①abc>1;②b+2a=1;③a-b<m(am+b)(m≠-1);④ax2+bx+c=1兩根分別為-3,1;⑤4a+2b+c>1.其中正確的項有()A.2個 B.3個 C.4個 D.5個3.如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是A.55° B.60° C.65° D.70°4.關于的方程有實數(shù)根,則整數(shù)的最大值是()A.6 B.7 C.8 D.95.某商品的標價為200元,8折銷售仍賺40元,則商品進價為()元.A. B. C. D.6.如圖,在△ABC中,點D,E分別在邊AB,AC上,且AEAB=ADA.1:3B.1:2C.1:3D.7.如圖,在平面直角坐標系中,正方形ABCD的頂點A的坐標為(﹣1,1),點B在x軸正半軸上,點D在第三象限的雙曲線上,過點C作CE∥x軸交雙曲線于點E,連接BE,則△BCE的面積為()A.5 B.6 C.7 D.88.如圖,五邊形ABCDE中,AB∥CD,∠1、∠2、∠3分別是∠BAE、∠AED、∠EDC的外角,則∠1+∠2+∠3等于A.90° B.180° C.210° D.270°9.半徑為3的圓中,一條弦長為4,則圓心到這條弦的距離是()A.3 B.4 C. D.10.⊙O是一個正n邊形的外接圓,若⊙O的半徑與這個正n邊形的邊長相等,則n的值為()A.3 B.4 C.6 D.8二、填空題(共7小題,每小題3分,滿分21分)11.如果把拋物線y=2x2﹣1向左平移1個單位,同時向上平移4個單位,那么得到的新的拋物線是_____.12.計算()()的結果等于_____.13.把直線y=-x+3向上平移m個單位后,與直線y=2x+4的交點在第一象限,則m的取值范圍是_________________.14.若方程x2+2(1+a)x+3a2+4ab+4b2+2=0有實根,則=_____.15.不等式組的解是____.16.有一張三角形紙片ABC,∠A=80°,點D是AC邊上一點,沿BD方向剪開三角形紙片后,發(fā)現(xiàn)所得兩張紙片均為等腰三角形,則∠C的度數(shù)可以是__________.17.已知:ab=23,則三、解答題(共7小題,滿分69分)18.(10分)如圖,將矩形OABC放在平面直角坐標系中,O為原點,點A在x軸的正半軸上,B(8,6),點D是射線AO上的一點,把△BAD沿直線BD折疊,點A的對應點為A′.(1)若點A′落在矩形的對角線OB上時,OA′的長=;(2)若點A′落在邊AB的垂直平分線上時,求點D的坐標;(3)若點A′落在邊AO的垂直平分線上時,求點D的坐標(直接寫出結果即可).19.(5分)如圖,△DEF是由△ABC通過一次旋轉(zhuǎn)得到的,請用直尺和圓規(guī)畫出旋轉(zhuǎn)中心.20.(8分)問題探究(1)如圖①,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,則線段BE、EF、FD之間的數(shù)量關系為;(2)如圖②,在△ADC中,AD=2,CD=4,∠ADC是一個不固定的角,以AC為邊向△ADC的另一側作等邊△ABC,連接BD,則BD的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由;問題解決(3)如圖③,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足為點D,則對角線AC的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由.21.(10分)如圖,△ABC和△ADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點D在線段BC上,AF平分DE交BC于點F,連接BE,EF.CD與BE相等?若相等,請證明;若不相等,請說明理由;若∠BAC=90°,求證:BF1+CD1=FD1.22.(10分)五一期間,小紅到郊野公園游玩,在景點P處測得景點B位于南偏東45°方向,然后沿北偏東37°方向走200m米到達景點A,此時測得景點B正好位于景點A的正南方向,求景點A與景點B之間的距離.(結果保留整數(shù))參考數(shù)據(jù):sin37≈0.60,cos37°=0.80,tan37°≈0.7523.(12分)計算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;24.(14分)已知a+b=3,ab=2,求代數(shù)式a3b+2a2b2+ab3的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

從正面看,有2層,3列,左側一列有1層,中間一列有2層,右側一列有一層,據(jù)此解答即可.【詳解】∵從正面看,有2層,3列,左側一列有1層,中間一列有2層,右側一列有一層,∴D是該幾何體的主視圖.故選D.【點睛】本題考查三視圖的知識,從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.2、B【解析】

根據(jù)二次函數(shù)的圖象與性質(zhì)判斷即可.【詳解】①由拋物線開口向上知:a>1;拋物線與y軸的負半軸相交知c<1;對稱軸在y軸的右側知:b>1;所以:abc<1,故①錯誤;②對稱軸為直線x=-1,,即b=2a,所以b-2a=1.故②錯誤;③由拋物線的性質(zhì)可知,當x=-1時,y有最小值,即a-b+c<(),即a﹣b<m(am+b)(m≠﹣1),故③正確;④因為拋物線的對稱軸為x=1,且與x軸的一個交點的橫坐標為1,所以另一個交點的橫坐標為-3.因此方程ax+bx+c=1的兩根分別是1,-3.故④正確;⑤由圖像可得,當x=2時,y>1,即:4a+2b+c>1,故⑤正確.故正確選項有③④⑤,故選B.【點睛】本題二次函數(shù)的圖象與性質(zhì),牢記公式和數(shù)形結合是解題的關鍵.3、C【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)和三角形內(nèi)角和解答即可.【詳解】∵將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵點A,D,E在同一條直線上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故選C.【點睛】此題考查旋轉(zhuǎn)的性質(zhì),關鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)和三角形內(nèi)角和解答.4、C【解析】

方程有實數(shù)根,應分方程是一元二次方程與不是一元二次方程,兩種情況進行討論,當不是一元二次方程時,a-6=0,即a=6;當是一元二次方程時,有實數(shù)根,則△≥0,求出a的取值范圍,取最大整數(shù)即可.【詳解】當a-6=0,即a=6時,方程是-1x+6=0,解得x=;

當a-6≠0,即a≠6時,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,

取最大整數(shù),即a=1.故選C.5、B【解析】

設商品進價為x元,則售價為每件0.8×200元,由利潤=售價-進價建立方程求出其解即可.【詳解】解:設商品的進價為x元,售價為每件0.8×200元,由題意得0.8×200=x+40解得:x=120答:商品進價為120元.故選:B.【點睛】此題考查一元一次方程的實際運用,掌握銷售問題的數(shù)量關系利潤=售價-進價,建立方程是關鍵.6、C【解析】∵AEAB∴△ABC∽△AED?!郤Δ∴SΔ7、C【解析】

作輔助線,構建全等三角形:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,證明△AGD≌△DHC≌△CMB,根據(jù)點D的坐標表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐標,根據(jù)三角形面積公式可得結論.【詳解】解:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,設D(x,),∵四邊形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,∵AG=DH=﹣1﹣x=1,∴點E的縱坐標為﹣4,當y=﹣4時,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,∴S△CEB=CE?BM=××4=7;故選C.【點睛】考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)、反比例函數(shù)的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,學會構建方程解決問題.8、B【解析】

試題分析:如圖,如圖,過點E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故選B9、C【解析】如圖所示:過點O作OD⊥AB于點D,∵OB=3,AB=4,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD=.故選C.10、C【解析】

根據(jù)題意可以求出這個正n邊形的中心角是60°,即可求出邊數(shù).【詳解】⊙O是一個正n邊形的外接圓,若⊙O的半徑與這個正n邊形的邊長相等,則這個正n邊形的中心角是60°,n的值為6,故選:C【點睛】考查正多邊形和圓,求出這個正多邊形的中心角度數(shù)是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、y=2(x+1)2+1.【解析】原拋物線的頂點為(0,-1),向左平移1個單位,同時向上平移4個單位,那么新拋物線的頂點為(-1,1);可設新拋物線的解析式為y=2(x-h)2+k,代入得:y=2(x+1)2+1.12、4【解析】

利用平方差公式計算.【詳解】解:原式=()2-()2=7-3=4.故答案為:4.【點睛】本題考查了二次根式的混合運算.13、m>1【解析】試題分析:直線y=-x+3向上平移m個單位后可得:y=-x+3+m,求出直線y=-x+3+m與直線y=2x+4的交點,再由此點在第一象限可得出m的取值范圍.試題解析:直線y=-x+3向上平移m個單位后可得:y=-x+3+m,聯(lián)立兩直線解析式得:,解得:,即交點坐標為(,),∵交點在第一象限,∴,解得:m>1.考點:一次函數(shù)圖象與幾何變換.14、【解析】

因為方程有實根,所以△≥0,配方整理得(a+2b)2+(a﹣1)2≤0,再利用非負性求出a,b的值即可.【詳解】∵方程有實根,∴△≥0,即△=4(1+a)2﹣4(3a2+4ab+4b2+2)≥0,化簡得:2a2+4ab+4b2﹣2a+1≤0,∴(a+2b)2+(a﹣1)2≤0,而(a+2b)2+(a﹣1)2≥0,∴a+2b=0,a﹣1=0,解得a=1,b=﹣,∴=﹣.故答案為﹣.15、【解析】

分別求出各不等式的解集,再求出其公共解集即可.【詳解】解不等式①,得x>1,

解不等式②,得x≤1,

所以不等式組的解集是1<x≤1,

故答案是:1<x≤1.【點睛】考查了一元一次不等式解集的求法,求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).16、25°或40°或10°【解析】【分析】分AB=AD或AB=BD或AD=BD三種情況根據(jù)等腰三角形的性質(zhì)求出∠ADB,再求出∠BDC,然后根據(jù)等腰三角形兩底角相等列式計算即可得解.【詳解】由題意知△ABD與△DBC均為等腰三角形,對于△ABD可能有①AB=BD,此時∠ADB=∠A=80°,∴∠BDC=180°-∠ADB=180°-80°=100°,∠C=(180°-100°)=40°,②AB=AD,此時∠ADB=(180°-∠A)=(180°-80°)=50°,∴∠BDC=180°-∠ADB=180°-50°=130°,∠C=(180°-130°)=25°,③AD=BD,此時,∠ADB=180°-2×80°=20°,∴∠BDC=180°-∠ADB=180°-20°=160°,∠C=(180°-160°)=10°,綜上所述,∠C度數(shù)可以為25°或40°或10°故答案為25°或40°或10°【點睛】本題考查了等腰三角形的性質(zhì),難點在于分情況討論.17、–12【解析】

根據(jù)已知等式設a=2k,b=3k,代入式子可求出答案.【詳解】解:由ab故:a-2bb+2b故答案:-1【點睛】此題主要考查比例的性質(zhì),a、b都用k表示是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)1;(2)點D(8﹣23,0);(3)點D的坐標為(35﹣1,0)或(﹣35﹣1,0).【解析】分析:(Ⅰ)由點B的坐標知OA=8、AB=1、OB=10,根據(jù)折疊性質(zhì)可得BA=BA′=1,據(jù)此可得答案;(Ⅱ)連接AA′,利用折疊的性質(zhì)和中垂線的性質(zhì)證△BAA′是等邊三角形,可得∠A′BD=∠ABD=30°,據(jù)此知AD=ABtan∠ABD=23,繼而可得答案;(Ⅲ)分點D在OA上和點D在AO延長線上這兩種情況,利用相似三角形的判定和性質(zhì)分別求解可得.詳解:(Ⅰ)如圖1,由題意知OA=8、AB=1,∴OB=10,由折疊知,BA=BA′=1,∴OA′=1.故答案為1;(Ⅱ)如圖2,連接AA′.∵點A′落在線段AB的中垂線上,∴BA=AA′.∵△BDA′是由△BDA折疊得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等邊三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=23,∴OD=OA﹣AD=8﹣23,∴點D(8﹣23,0);(Ⅲ)①如圖3,當點D在OA上時.由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴BM=AN=12OA=4,∴A′M=A'B2-B∴A′N=MN﹣A′M=AB﹣A′M=1﹣25,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,則A'MDN=BMA'解得:DN=35﹣5,則OD=ON+DN=4+35﹣5=35﹣1,∴D(35﹣1,0);②如圖4,當點D在AO延長線上時,過點A′作x軸的平行線交y軸于點M,延長AB交所作直線于點N,則BN=CM,MN=BC=OA=8,由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴A′M=A′N=12MN則MC=BN=A'B2-A'N2=25,∴MO由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,則MEA'N=MA'NB解得:ME=855,則OE=MO﹣ME=1+∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴DOA'M=OEME,即解得:DO=33+1,則點D的坐標為(﹣35﹣1,0).綜上,點D的坐標為(35﹣1,0)或(﹣35﹣1,0).點睛:本題主要考查四邊形的綜合問題,解題的關鍵是熟練掌握折疊變換的性質(zhì)、矩形的性質(zhì)、相似三角形的判定與性質(zhì)及勾股定理等知識點.19、見解析【解析】試題分析:首先根據(jù)旋轉(zhuǎn)的性質(zhì),找到兩組對應點,連接這兩組對應點;然后作連接成的兩條線段的垂直平分線,兩垂直平分線的交點即為旋轉(zhuǎn)中心,據(jù)此解答即可.解:如圖所示,點P即為所求作的旋轉(zhuǎn)中心.20、(1)BE+DF=EF;(2)存在,BD的最大值為6;(3)存在,AC的最大值為2+2.【解析】

(1)作輔助線,首先證明△ABE≌△ADG,再證明△AEF≌△AEG,進而得到EF=FG問題即可解決;(2)將△ABD繞著點B順時針旋轉(zhuǎn)60°,得到△BCE,連接DE,由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根據(jù)DE<DC+CE,則當D、C、E三點共線時,DE存在最大值,問題即可解決;(3)以BC為邊作等邊三角形BCE,過點E作EF⊥BC于點F,連接DE,由旋轉(zhuǎn)的性質(zhì)得△DBE是等邊三角形,則DE=AC,根據(jù)在等邊三角形BCE中,EF⊥BC,可求出BF,EF,以BC為直徑作⊙F,則點D在⊙F上,連接DF,可求出DF,則AC=DE≤DF+EF,代入數(shù)值即可解決問題.【詳解】(1)如圖①,延長CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案為:BE+DF=EF;(2)存在.在等邊三角形ABC中,AB=BC,∠ABC=60°,如圖②,將△ABD繞著點B順時針旋轉(zhuǎn)60°,得到△BCE,連接DE.由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等邊三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴當D、C、E三點共線時,DE存在最大值,且最大值為6,∴BD的最大值為6;(3)存在.如圖③,以BC為邊作等邊三角形BCE,過點E作EF⊥BC于點F,連接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等邊三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC為直徑作⊙F,則點D在⊙F上,連接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值為2+2.【點睛】本題考查了全等三角形的判定與性質(zhì)以及旋轉(zhuǎn)的性質(zhì),解題的關鍵是熟練的掌握全等三角形的判定與性質(zhì)以及旋轉(zhuǎn)的性質(zhì).21、(1)CD=BE,理由見解析;(1)證明見解析.【解析】

(1)由兩個三角形為等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根據(jù)“SAS”可證得△EAB≌△CAD,即可得出結論;(1)根據(jù)(1)中結論和等腰直角三角形的性質(zhì)得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后證得EF=FD,BE=CD,等量代換即可得出結論.【詳解】解:(1)CD=BE,理由如下:∵△ABC和△ADE為等腰三角形,∴AB=AC,AD=AE,∵∠EAD=∠BAC,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即∠EAB=∠CAD,在△EAB與△CAD中,∴△EAB≌△CAD,∴BE=CD;(1)∵∠BAC=90°,∴△ABC和△ADE都是等腰直角三角形,∴∠ABF=∠C=45°,∵△EAB≌△C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論