相關(guān)課程納米學院cch lecture_第1頁
相關(guān)課程納米學院cch lecture_第2頁
相關(guān)課程納米學院cch lecture_第3頁
相關(guān)課程納米學院cch lecture_第4頁
相關(guān)課程納米學院cch lecture_第5頁
已閱讀5頁,還剩146頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

《材料物理化學》講座第一講:新能源技術(shù)與材料New

Energy

technology

and

materials陳

( :

cc

)Department

of

Materials

Science

and

EngineeringUniversity

of

Science

and

Technology

of

China引言Why

new

energy

technology?我國能源持續(xù)供應(yīng)能力石油資源原油儲量分布中東

66.4%南美7.8%7.5%非洲6.6%東歐

5.8%西歐1.8%亞洲3.9%中國儲量可采儲量澳大利亞0.2%940億噸52.6億噸(占世界第12位)占世界儲量的2.43%生產(chǎn)與需求2001年石油產(chǎn)量1.65億噸2003年石油產(chǎn)量進口量2005年石油產(chǎn)量進口量進口量 0.7億噸(原油)0.3億噸(成品油)1.69億噸(原油)0.1442億噸(成品油)0.8299億噸(原油)1.82億噸(原油)1.3億噸(原油)(

消費量為4366萬噸)2007年進口量2008年進口量1.63億噸(原油)0.338億噸(成品油)1.79億噸(原油)現(xiàn)在,我國石油對外依存度為50%.2011年:55%;2020:預(yù)計65-70%52.6

(1.79

2)

14.7(年)煤炭資源世界上最大可能儲量10.6萬億噸世界探明可采儲量9842億噸大約可供開采150―200年中國保有儲量10070.7億噸(國家

1998)1650億噸(世界第三位),為世界人均儲量的45%中國可采儲量2001年中國原煤產(chǎn)量

11.1億噸標準煤2003年中國原煤產(chǎn)量

19億噸標準煤2005年中國原煤產(chǎn)量

21.9億噸標準煤Syngas

(H2

+

CO)C

+

H2O

CO

+

H2C

+

O2

→CO2CO2

+

C

→2COCH4

+

H2O

CO

+

3H2CO

+

H2O

CO2

+

H2(water

gas

shift

reaction

)As

a

fuel,

most

often

produced

bygasification

of

coal,

biomass

ormunicipal

waste.As

an

intermediate

in

industrialsynthesis

of

hydrogen

(e.g.

NH3production),

produced

fromnatural

gas

(

reformingreaction)EnergysourcesGas

separationMembranesCatalysisCO2-removalH2-technologyFuel

cellsSustainableEfficientEnvironmentaland

climatefriendlyHydropowerSun,

wind,

waveGasGas/liquidfuelImprovedefficiencyReducedemissionsCO2

and

NOxStorageHydrogenSOFC

PEMSolar

cellsPhotolysisElectrolysisNew

energy

technologyUSEElectromotors;

HeatElectricityBatteries

CapacitorsElectricity

storage

andusePart

1:

電化學基礎(chǔ)Electrochemistry

basicsThe

amount

of

electricity

that

flows

through

the

celldepends

on

the

amount

of

species

being

oxidized

or

reducedaccording

to

the

Faraday

law:Am

it

MnFI

=

dQ/dt Q

=

∫IdtElectricity:n-

number

of

electrons

in

a

redox

reaction,

N-number

of

moles,MA-

molecular

weight,

F-

Faraday

constant

(96485C/mole)In

an

electrochemical

reaction:

aA

+

bB

==

gG

+

hHG0

=

-nFE0

G

=-nFE E=E0

(RT/nF)lnQrS

=

nF(E/T)P

rH

=

-nFE

+nFT(E/T)PΔGocell

=

-nFEocellEocell=

Eocathode

Eo

eanodIf

Eocell>

0,

thentheprocess

is

spontaneous(galvanic

cell)If

Eocell<

0,

then

theprocess

isnonspontaneous(electrolytic

cell)Part

2:

氫能與膜分離技術(shù)Natural

gas

as

energy

sourceExchange

of

coalan l

by

more

environmentalfriendly

natural

gasNatural

gas

for

use

in

fuel

cellsNatural

gas

as

source

for

hydrogen

(or

hydrogencarriers)Impact

of

membrane

technology

on

GTLOxygenPlantReformerFisher-TropschReactorSeparation

/UpgradingSyngas

ReactorFisher-TropschReactorSeparation

/UpgradingConventional

ProcessLiquid

Products15

%Air30%Ceramic

Membrane

ProcessAirNat.

Gas

/Liquid

ProductsNat.

Gas

/30

%

25

%CAPITAL

INVESTMENTEthyleneOlefinsSynthesisMTOPropyleneBy-productsNatural

GasMethanolSynthesisSynthesisGasProductionSyn.Gasto

MeOHGas

To

Olefins

(GTO)Catalysts

for

gas

conversionThe

UOP/Hydro

Methanol

To

Olefins

ProcessCatalysts

for

gas

conversionThe

gas

to

syngas

ProcessMTO

ReactionsCatalystD

oCButenesThe

unique

pore

sizeallows

selectiveconversion

to

olefinsand

excludes

heaviercompoundsMethanolCH3OHEthyleneC2H4PropyleneC3H6Catalysts

for

gas

conversionThe

Propane

DeHydrogenation

processHydrotalciteHeat(Mg,Al)O

supportPropane

C3H8Propylene

C3H6

+

H2Mg6Al2CO3(OH)16·4(H2O)+

catalystimpregnationPt,

Sn水滑石Oxides

for

energy

technologyOxygen

permeable

membranes

(ceramic

membranes)dense

materials;

oxygen

transport

by

atomic

diffusioninfinite

O2

selectivity;

operation

at

high

temperaturesMixed

conductors;

electron

and

oxygen

ion

transportchemical

stability;

thermal

and

chemical

expansionPurification

of

air

for

use

in

oxidation

processesultra

clean

syngas

production

(NOx

reduction)GTL;

lowering

of

greenhouse

gas

emissions;

CH4,

CO2Related

materials

used

in

SOFC;

of

interest

as

high

Tc,

CMR,

etcMaterials

for

oxygen

permeable

membranesH2OAir

+

CH4N2

xH2

+

COO2-2e-MembraneO2氧氣分離方法氧氣分離方法低溫分餾:能耗高,設(shè)備體積大,

投資大,集中生產(chǎn)會帶來

問題;變壓吸附:無法實現(xiàn)連續(xù)生產(chǎn),生產(chǎn)效率低,O2選擇性低,得到的氧氣純度不高;氧分離膜:理論氧分離效率為100%,能耗低,過程簡單,成本低,且能方便的與耗氧工藝耦合,可以降低氧氣的生產(chǎn)成本30%。低溫分餾工作原理&氧滲透理論“離子-電子混合導(dǎo)體”Def:氧離子遷移數(shù)t

i偏離于1,即體系同時存在氧離子電導(dǎo)及電子電導(dǎo)圖1

混合導(dǎo)體透氧膜的氧滲透原理圖圖2

混合導(dǎo)體透氧膜氧滲透過程的等效電路圖氧滲透過程從宏觀上看就是氧氣從高氧分壓端經(jīng)體相擴散滲透到了低氧分壓端,工作中的混合導(dǎo)體透氧膜可看作是一個

短路的氧的濃差電池。工作原理&氧滲透理論R

s’和Rs”:高、低氧分壓端表面交換電阻,Rbi和Rb

:氧離子和電子(空穴)體相遷移電阻,elE

I

: 電池的理論電動勢和電流。濃差電池的理論電動勢為:氧離子和電子空穴定向遷移引起的內(nèi)電流與氧滲透流量FO2的關(guān)系為:→Rs>>Rb,表面交換控制過程;

Rs<<Rb,體相擴散控制過程;

Rs≈Rb,共同控制過程。工作原理&氧滲透理論(Nernst

Equation)沒有外電場存在時的氧滲透率為:工作原理&氧滲透理論雙極電導(dǎo)率σamb(ambipolar

conductivity)根據(jù)氧化學勢的定義:沿膜厚L

積分得:σi,σel不受氧分壓影響(Wagner

公式)σi<<σel(JO2∝σi)分類混合導(dǎo)體圖3

氧離子缺陷傳導(dǎo)機制示意圖單相 雙相Def:氧離子和電子在同一相中

Def:氧離子和電子有不同且相傳導(dǎo) 互獨立的

通道相結(jié)構(gòu)組成氧空位間隙氧氧離子缺陷物種圖4

不同相結(jié)構(gòu)組成的混合導(dǎo)體混合導(dǎo)體透氧膜的種類及研究概況單相混合導(dǎo)體鈣鈦礦型結(jié)構(gòu)(ABO3)特點:A位和B位具有很強的摻雜能力☆低價離子在A位摻雜能形成大量氧空位,具有良好的氧離子導(dǎo)電性;☆在B位摻雜的過渡金屬離子又具有較強的變價能力。這類材料通過Zener雙交換機制傳導(dǎo)電子電能良流及氧空位傳導(dǎo)氧離子,從而形好的離子—電子混合導(dǎo)體。Ln1-xAxCo1-yByO3-δ(Ln=

La,Gd,Sm,Nd,Pr,A=

Na,Ca,Ba,Sr,B=

n,F(xiàn)e,Co,Ni,Cu)、Y0.05BaCo0.95O3-δ、La1-xMxCrO3-δ(M=Ca,Sr,Mg)、Y0.1Ba0.9CoO3-δ、CaTi1-xMxO3-δ(M=Fe,Co,Ni)、Ba0.5Sr0.5Co0.8Fe0.2O3-δ。0.8

0.2

3-δ

0.5

0.5

0.8

0.2

3-δ其中SrCo

FeO

和Ba

Sr

Co

Fe

O

在850℃以上的air/He梯度下透氧量達到10-6mol/cm2?s類鈣鈦礦型結(jié)構(gòu)(AO(ABO3)n)Ruddlesden-Poppern=1,代表物質(zhì):La2NiO4晶體結(jié)構(gòu):層狀,c軸方向是由LaO和LaNiO3鈣鈦礦交替而成對其進行摻雜可提高透氧能力。Sr

Fe

O

,SrCoFe O

,Bi

Sr

CaCuO

,YBa

Cu

O4 6

13 0.5

y

2

2

8

2 3

6+δLa

Ni Fe

O和La

Cu2 1-x

x

4+δ2 1-x

x

4+δCo

O

在850℃的透氧速率10?7mol/cm2?s雙相混合導(dǎo)體結(jié)構(gòu)特點:兩個組成相之間化學兼容性要好,且熱膨脹系數(shù)和燒結(jié)溫度都必須相近?!钛蹼x子導(dǎo)電相:穩(wěn)定的ZrO2,摻雜的CeO2等☆電子導(dǎo)電相: 金屬,高電導(dǎo)率的氧化物La0.6Sr0.4MnO3-δ

La0.8Sr0.2Cr0.5Fe0.5O3-δ

La0.8Sr0.2Cr0.5Mn0.5O3-δLa0.8Sr0.2CrO3-δ

、La0.8Ca0.2CrO3-δ-YSZ、SDC

Au、Ag、Pd、Pt雙相混合導(dǎo)體相對單相透氧量相差一個數(shù)量級鈣鈦礦型結(jié)構(gòu)(ABO3)3

n類鈣鈦礦型結(jié)構(gòu)(AO(ABO))試驗裝置圖airO2

depleted

air狀膜b)管狀膜圖6

氧滲透性能測試裝置基于透氧膜的膜反應(yīng)器用于

氣CH4Pure

O2致密陶瓷透氧膜Mainly

CO,H2Little

CH4

,CO2,H2OAirO2

depletedair主要反應(yīng):2CH4+O2=2CO+4H2穩(wěn)定性考慮,選擇雙相混合導(dǎo)體材料;透氧量考慮,選擇中空纖維膜。近期工作:LSCF-YSZ(SDC)中空纖維膜進行POM燃燒-重整串聯(lián)膜反應(yīng)器構(gòu)造示意圖兩段式(燃燒-重整)Ni/-Al2O3催化劑

→→SrFeCo0.5O3.25XCH4FO2OCM透氧膜反應(yīng)器中OCM反應(yīng)機理示意圖OCM試驗結(jié)果材料體系C2選擇性產(chǎn)率La0.6Sr0.4Co0.8Fe0.2O3-δ70%<5%(LSCFO)La-Ba-Co-Fe-O

(LBCFO)>50%—Ba0.5Sr0.5Co0.8Fe0.2O3-δ(

BSCFO)>50%~10%BaCe0.8Gd0.2O3-δ62.5%16%相對于固定床反應(yīng)C2選擇性的20%,上述實驗結(jié)果均比常規(guī)反應(yīng)器中反應(yīng)的結(jié)果要高,表明利用MIEC透氧膜反應(yīng)器進行OCM反應(yīng)確能提高C2的選擇性。過去300空氣中的CO2濃度變化圖過去140年平均氣溫變化圖溫室氣體減排溫室氣體CO2在大氣中含量的增加,已經(jīng)導(dǎo)致了全球平均溫度在過去幾十年里一直呈現(xiàn)增加的趨勢,控制大氣中CO2的含量已經(jīng)成為國際社會的共識。唯一的辦法就是進行CO2的捕獲。三種捕獲方法:燃燒前除碳、純氧燃燒、燃燒尾氣中CO2捕獲?,F(xiàn)有O2/CO2燃燒技術(shù)流程示意圖CO2

捕獲燃燒氣體凈化低溫分離空氣O2

O2

/

CO2CO2循環(huán)現(xiàn)有O2

/CO2燃燒技術(shù)流程圖需額外消耗30%的能量用于分離氧氣和壓縮CO2空氣分離能耗大、投資高、增加電廠占地面積基于透氧膜的新型O2/CO2燃燒技術(shù)CO2

捕獲燃燒氣體凈化O2

/

CO2CO2循環(huán)基于陶瓷透氧膜的新型O2/CO2燃燒技術(shù)流程圖空氣分離成本低、能量損失小、投資小新型O2/CO2燃燒技術(shù)特點優(yōu)點可實現(xiàn)CO2零排放NOx排放量低,<<1ppm能量損失小(相對于O2/CO2燃燒技術(shù))存在的難題合適的透氧膜材料膜材料加工工藝高溫熱交換設(shè)備O2/CO2燃燒技術(shù)透氧膜材料要求:耐CO2侵蝕,相當?shù)耐秆趿俊rCo0.8Fe0.2O3-δ

(SCF)體系中B位摻雜Ti,Zn,Zr。試驗結(jié)果表明材料耐CO2性能和透氧性能都很好?;谕秆跄さ男滦蚈2/CO2燃燒技術(shù)Sr(Co0.8Fe0.2)1-xTix

O3-δ

(0≤x≤0.4)在CO2氣氛下的重量和透氧量變化曲線基于透氧膜的零排放電池技術(shù)前置重整器LSCF-YSZ后置燃燒器LCC-SDCUSTC:

two-stage

oxygen-permeablemembrane

reactora)

The

chemical

conversionsin

different

areas

of

themembrane

reactorb)

the

construction

anddimensions

of

the

reactor.Angew.

Chem.

Int.

Ed.

2003,

42,

5196

–5198Ceramic

membrane

reactorsO2-permeable

hollow

fibres

and

capillaries

with

an

oxygen-flux

0.5

m3/m2

h

barHigh-temperature

module

up

to

900°C

housing

oxygen-permeable

membranesof

0.1

m2

areaFull-ceramic

module

with

1

m2

microporous

and

catalytically

active

membraneareaTechnologies

for

the

catalytic

coating

of

membranes/modulesPart

3:能與能電池第一代能電池第二代能電池第三代能電池單晶硅25.9%,20.3%多晶硅20.4%,15.5%非晶硅11.7%,10.4%CdTe

16.7%,10.9%CIS

19.9%,13.5%敏化電池10.4%有機薄膜電池5.15%納米結(jié)構(gòu)電池太陽能電池Schematic

of

a

Photovoltaic

(solar)

cellSchematic

representation

of

the

principal

of

thenanocrystalline

injection

cell

(dye

sensitized

heterojunction

solarcell)Dye-sensitized

solar

cellRef.Home

page

in

renewableresearch

center

in

ColoradoPhotoelectrochemical

CellPhotoelectrochemical

CellS+hνS*S*

S++e-CB(TiO2)S++A-A+e-(CE)S+AA-Voc=1/q【(Ef)TiO2

-(E(R/R-))】Dye-sensitized

solar

cellTiO2DyeRef.

M.Gratzel.

Acc.Chem.Res.

2000敏化劑分類聯(lián)吡啶金屬絡(luò)合物系列酞菁(Phthalocyanine)系列卟啉(Porphyrin)系列純有機系列NNNNHOOCCOOHCOOHCOOHRuSCNNCSN3NNNRuHOOCCOOHCOOHNCSNCSSCNBlack

dyeRef:

Nazeeruddin

M.K.,

etal.,

J.

Am.

Chem.

Soc.,

1993,115,6382Nazeeruddin

M.K.,

et

al.,Chem.

Commun.,

1997,1705-1706聯(lián)吡啶金屬絡(luò)合物系列Wavelength

[nm]Ref:

Hagfeldt

A.

and

Gr?tzel

M.,

Acc.

Chem.

Res.,2000,33,269-277Black

dyeRef:

N

azeeruddinM

K,

GratzelM

J.Am.Chem.Soc.1993,

115:

6382Hagfeldt

A.

and

Gr?tzel

M.,

Acc.

Chem.

Res.,2000,33,269N3

和Black

Dye性能比較NNNNNNNNRRRRMNNNNMRRRR卟啉系列和酞菁系列Ref:

(1)A.Kay,

M.Gratzel,

et

al.,J.Phys.Chem.1993,97,6272(2)

M.M.

Ressler

and

R.K.

Panday,Chemtech,1998,3.39Ref:Sayama

K.,etal.,

Chem.

Commun.,

2000,

1173NSCHCHNSOSC18H37COOHMerocyanine

derivative,

Mb(18)-N

with

an

overall

η

=4.2%純有機系列(一)半菁衍生物Ref:

Hara

K.,

et

al.,

New

J.

Chem.

2003,27,783OCNCOOHNOONOSSHOOCCNNKX-2311NKX-2677純有機

系列(二)香豆素衍生物Dye-sensitized

solar

cellRef.

Homepage

in

Gratzelgroup電解質(zhì)材料液態(tài)電解質(zhì)存在的缺點:易導(dǎo)致敏化

的脫附;溶劑易揮發(fā),與敏化作用導(dǎo)致降解;密封工藝復(fù)雜;載流子遷移速率很慢,在高強度光照時不穩(wěn)定;存在其他氧化還原反應(yīng)……Ref:Tennakone

K,

Perera

V

P

S

,

et

al

.

J

.

Phys.

D:Appl

.

Phys.

,1999

,32

,374.固態(tài)空穴傳輸材料Gr?tzel

等人在1998年用2,2’,7,7’-四(N,N-二對甲氧基苯基氨基)-9,9’-螺環(huán)二芴(OMeTAD,如下圖所示)作為空穴傳輸材料,得到了單色效率高達33%的電池。Bach

U

,LupoD

,Comte

P

,

et

al

.

Nat

ure

,1998

,395

:583Photoelectrochemical

Cellmetale

-h+Light

is

Converted

to

Electrical+Chemical

EnergyLiquidSolidSrTiO3KTaO3TiO2SnO2Fe2O3Solar

semi-conductor

device.

(Ga,

In,

and

P,

elements).傳統(tǒng)能電池分類各類能電池效率Prog.

Photovolt:

Res.

Appl.

2006;

14:45–51含鎵的銅銦電池19.5±0.6國家可再生能源0.410cm2面積碲化鎘電池16.5±0.5國家可再生能源1.032

cm2面積多晶硅薄膜電池16.6±0.4德國斯圖加特大學4.017cm2面積納米硅

電池10.1±0.2公司2微米厚膜二氧化鈦納米電池11.0±0.5EPFL0.25

cm2面積0.27cm2面積USSC公司14.5(初始)±0.712.8(穩(wěn)定)±0.7非晶硅電池4cm2面積能源公司30.28±1.21.002cm2面積德國20.3±0.5333倍聚光Spectrolab34.7±1.7GaAs多結(jié)電池多晶硅 電池InGaP/GaAs96倍聚光SunPower公司26.8±0.8背接觸聚光單晶硅電池4cm2面積澳大利亞新南威爾士大學24.7±0.5單晶硅電池備注研制單位轉(zhuǎn)換效率(%)電池種類世界各種

能電池水平各種電池效率的最高水平(STC:AM1.5,1000W/m2,25℃)Si-based

solar

cellsEfficiencyCostsFeedstock

-

availabiltyPurity

requirements

SoG-Si(SoG-Si:

6N

vs.

SEG-Si:

11N)Si-productionELKEMSolar

siliconrsScanSolar

cellsr

ScanCellSolar

cellpanelsSolEnergyResearch

&

educationProduction

of

SoG-Si

solar

grade

siliconQu)artz(SiO2)Carbonprocess

processSoG-Si0.0316025Feedstock

limitationsfrom

EG

scrapNewSoG-SiprocessCurrent

processMetallurgical

Grade

SiliconMG-SiPrimaryPrices

in

US$/kg

SiEG-SiSilicon

forelectronicsQuartz(SiO2)CarbonPrimaryprocessMG-SiSoG-SiDirect

route

to

Solar

Grade

SiSiliconm.p.=1414oC

b.p.=3265oCSilicon

Preparation兩種多晶硅的

工藝改良西門子法和硅烷法1955年西門子公司研究成功了用H2還原SiHCl3,在硅芯發(fā)熱體上沉積硅的工藝技術(shù),并于1957年建廠進行工業(yè)規(guī)模生產(chǎn)。,這就是通常所說的西門子法。隨后,西門子工藝的改進主要集中在減少單位多晶硅產(chǎn)品的原料、輔料、電能消耗以及降低成本等方面,于是出現(xiàn)了改良西門子法。該方法所生產(chǎn)的多晶硅占世界生產(chǎn)總量的70~80%。1956年英國國際標準電氣公司的標準電訊實驗所研究成功了SiH4熱分解 多晶硅的方法,被稱為硅烷法。1959年的石冢

也同樣成功研究出該方法。 聯(lián)合碳化物公司研究歧化法

SiH4,1980年 最終報告,綜合上述工藝并加以改進,誕生了新硅烷法多晶硅生產(chǎn)工藝技術(shù)。Silicon

PreparationSynthesis

of

Metallurgical

grade

silicon

(MGS)300oCIn

fluid-bed

reactorSi

+

3HCl

SiHCl3(b.p.

31.8oC)SiO2

+

2C2000oCSi

+

2COMG-Si(metallurgicalgrade

silicon)(>

98%)SiO2

+

C

SiO

+

COSiO

+2C

SiC

+

COSidereactionsSiO2

+

2SiC

3Si

+

2COWith

high[SiO2]+

H2fordistillationFrom

MGS

to

EGS

(electronic

grade

silicon)SiHCl3

+

H21000oC

Si

+ 3

HClEGS

(>99.9%)processFrom

MGS

to

EGS

(electronic

grade

silicon)改良西門子法流程①SiHCl3的②SiHCl3的精餾提純③SiHCl3的氫還原④還原尾氣回收⑤SiCl4氫化State-of-the-art

of

IC

industryk0≈1

for

B,

P,AsCrystal

growth

Czochralski

processThe

raw

Si

used

for

crystalgrowth

ispurified

from

SiO2

(sand)

throughrefining,

fractional

distillationand

CVD.The

raw

material

contains

<

1

ppbimpurities

except

for

O

(

1018

cm-3)andC

(

1016

cm-3)Essentially

all

Si rs

used

for

ICstoday

come

from

Czochralski

growncrystals.Polysilicon

material

is

melted,

held

atclose

to

1415C,

and

a

single

crystal

seed

isused

to

start

the

crystal

growth.Pull

rate,

melt

temperature

and

rotationrate

are

all

important

control

parameters.The

surface

tension

between

the

seed

and

the

molten

silicon

causes

a

smallamount

of

the

liquid

to

rise

with

the

seed

and

cool

into

a

single

crystalline

ingotwiththe

same

orientation

asthe

seed.The

ingot

diameter

is

determined

by

a

combination

of

temperature

and

extractionspeedCrystal

growth

Czochralski

processExamples

of

completed

ingotsCrystal

growth

Float-zone

processternative

growth

process

is

the

float

zone

process

which

canbeused

for

either

refining

or

single

crystal

growth.In

the

float

zone

process,

dopants

and

other

impurities

tend

to

stayin

the

liquid

and

therefore

refining

can

be plished,

especiallywith

multiple

passes.Crystal

growth

Impurity

segregationEquilibrium

segregation

coefficient:ko=

Cs/ClCs:

the

equilibrium

concentration

of

the

impurity

in

the

solidCl:

the

equilibrium

concentration

of

the

impurity

in

the

meltko

<

1,

implying

that

the

impurities

preferentially

segregateto

the

melt

and

the

melt es

progressively

enrichedwiththese

impurities

as

the

crystal

is

being

pulled.Thin-fiolar

cellCu-In-Ga-Se

(CIGS)CIGS

has

the

highest

demonstrated

efficiency

of

allthin-fi at

19.5%CIGS

can

bedeposited

on

flexible

substratesenabling

lightweight

flexible

modulesNo

inherent

material

limitations

or

hazardouschemicalsRoll-To-Roll

PV

Cell

&

Module

process

FlowRoll

Coater

Manufacturing

SystemFinished

Product16.5%

Efficient

CdTeSolar

CellsPolycrystallineThin

Film

Tandem

Solar

Cell15%

efficient

4-terminal

device

willbe

met1600

PV

cells

in

Sacramento,

CA.

(2

MW

electricity).Part

4:電池Fuel

Cell

DiagramCathodeAnodeO2

inO2/H2O

outH2

inchannelsfor

H2

flowchannelsfor

O2

flowH2/H2O

outH+

or

O2-

conductor(electrolyte)H2

and

O2

never

come

into

contact,

only

H+

and

O2-!!TypeAcronymElectrolyteProton

exchange

membranePEMFCPEMPhosphoric

acidPAFCH3PO4AlkalineAFCKOHMolten

carbonateMCFCCarbonate

SaltsSolid

oxideSOFCYSZTypes

of

fuel

cell:

based

on

kinds

of

electrolyteTypes

of

Fuel

CellsWastefromanodeWastefromcathodeFuel

toanodeOxidizer

(air)toanodeAnode

ElectrolytematerialElectrochemicalreactionin

differenttypesof

FCCathodeMain

advantages

andapplication

of

fuelcellRange

ofapplication

of

thedifferent

types

offuel

cellHigher

efficiencyLess

pollutionQuietPotential

for

zeroemissions,

HigherefficiencyHigher

energydensity

than

batteriesFaster

rechargingMain

advantagePower

inWattsDistributed

powergeneration,

CHP,

alsobusesCars,

boats

anddomesticCHP(Combined

heat

&power)Potable

electronicsequipment( ,

NB,Communication)Typicalapplication1

10

100

1k

10k

100k

1M

10MAFCMCFCSOFCPEMFCPAFCTypes

of

Fuel

CellsProton

Exchange

Membrane

fuel

cells

(PEM):

aka

polymer

eletrodefuel

cells. Use

thin

solid

membrane

as

electrode. High

powerdensity

and

low

weight

compared

to

other

fuel

cells. Can

operateat

relatively

low

temperatures.Alkaline

fuel

cells

(AFCs):

Currently

used

by

space

shuttle

fleet.Use

of

KOH

as

an

electrolyte. Very

efficient

in

space

applicationshowever

susceptible

to

carbon

contamination.Phosphoric-acid

fuel

cells

(PAFCs):

Use

liquid

phosphoric

acid

asthe

electrolyte. Very

efficient

up

to

80%,

but

rather

large

andheavy

and

used

mainly

for

stationary

appilications.Solid

Oxide

(SOFCs):

Use

of

hard

non-pourous

ceramic

compoundas

the

electrode. Very

high

operating

temp

of

around

1800

Ftherefore

require

long

heating

time

but

are

very

efficient.Molten

carbonate

fuel

cell

(MCFC):

Molten

carbonate

fuel

cells

usean

electrolyte

composed

of

a

molten

carbonate

salt

mixturesuspended

in

a

porous,

chemically

inert

cerami

hiumaluminum

oxide

(LiAlO2)

matrix.

These

systems

are

large

andoperate

at

very

high

temperatures

(in

the

range

of

1,200oF).Durability

is

limited

by

corrosive

electrolyteTypes

of

fuel

cellsCso

be

designated

by

which

fuel

is

used.Hydrogen2

H2

(g)

+

O2

(g)

2

H2O

(g)MethanolCH3OH

(g)

+

O2

(g)

CO2

(g)

+

H2O

(g)PropaneC3H8

(g)

+

5

O2

(g)

3

CO2

(g)

+

4

H2O

(g)Advantages

of

fuel

cellsFuel

(H2

or

hydrocarbons)

is

light

and

can

betransported/refilled.H2

fuel

cells

are

very

efficient

(80%).Fuel

cells

can

be

made

very

tiny.layer

thicknesses

of

m

or

nm

instead

of

mm.can

be

stacked

to

provide

higher

voltage

potential

(V)Power

can

be

increased

by

increasing

fuelflowP

=

IV

so

I

and

V

means

P.Solid

Oxide

Fuel

CellsOxygenOxygenIonsHydrogen

WaterElectron

flowElectrolyteCathode4e-

+

O2

2O2-AnodeH2+O2-H2O+2e-關(guān)鍵材料固體電解質(zhì)電極材料連接材料材料特性(1)高離子電導(dǎo)(1)高的電子電導(dǎo)率和一定的離子電導(dǎo)率(2)穩(wěn)定性(3)相容性

(4)催化活性

(5)多孔性(6)足夠的機械強度(1)

高純的率穩(wěn)定性相容性電子電導(dǎo)率穩(wěn)定性相容性(4)高的致密度(5)足夠的機械強度材料體系(1)YSZ材料

(2)DCO材料摻雜的LaGaO3材料Bi2O3基材料固體質(zhì)子導(dǎo)體材料鎳基、摻雜的氧化鈰基陽極和鈣鈦礦型氧化物陽極La1-xSrxMnO3(LSM)LSM-YSZLa1-xSrxCoO3(LSC)La1-xSrxCo1-yFeyO3d(LSCF)Sm0.5Sr0.5Co3

(SSC)La1-xCaxCrO3(LCC)

、La1-xSrxCrO3(LSC)和Cr-Ni合金等ZrO2基電解質(zhì)(YSZ)ZrO2

相圖加入Y2O3形成穩(wěn)定立方化ZrO2穩(wěn)定性,在高溫具有足夠的離子電導(dǎo)率和可忽略的電子電導(dǎo),以及高的機械強度σT=800℃=0.03

S

cm‐1Crystal

structures

of

zirconia

(ZrO2)CubicRT1170oC2370oCUndopedZrO2:Pure

undoped:

not

interesting

as

a

ceramicCooling

after

sintering:

T

M;Volume

expansion

FractureStabilize

high

temperature

C-phase

to

RT:17

mol%

YO1.5:

stabilizedZrO2;

Ionic

conductorStabilizing

T-phase

to

RT

is

interesting

(TZP)Metastable

T-phase:

high

strength/toughnessMonoclinic

Tetragonal(La,Sr)MnO3(LSM)陰極0.00000.00050.00150.00206.05.25.04.24.0x=0x=0.1x=0.2x=0.3x=0.4x=0.7x=0.5log[T

(S

cm-1K)]0.0010T-1/K-11-x

xLa Sr

MnO3+O2P =1

barLSM表面交換系數(shù)和氧擴散系數(shù)Ni-YSZ復(fù)合陽極1010-210-1100104103102101Conductivity

(S

cm-1)Toyo

SodapowderZircar

powder6020

30

40

50Ni

content

(vol%)熱膨脹系數(shù)、孔隙率、TPB的擴散程度(電化學性能)、長期性能PVI曲線(濕H2+O2)Journal

of

SolidState

Electrochemistry

13(12):

1905‐1911Nature,

414(2001)

345‐352電解質(zhì)薄膜化高性能陰極難點一:SOFC低溫化OxygenOxygenIonsElectron

flowElectrolyteCathode4e‐

+

O2

2O2‐Bio‐Gas(CO

+

H2

+

CH4)

+

O2‐CO2

+

H2O

+

e‐AnodeBio‐gasH2O

+

CO2難點二:生物質(zhì)難點三:大功率電池堆Hydrogen-Oxygen

Fuel

Cell

with

Alkali

or

PhosphoricAcid

ElectrolyteH2O2LoadanodecathodeH2

+

2OH-

=2H2O

+

2e-H2O2LoadanodecathodeH2

=

2H+

+

2e-OH-OH-OH-

OH-H+H+H+H+

+

OH-

=H2OH+H+

+

OH-

=

H2O22H+

+

2e-

+

1/2O

=H2O2

2H

O

+

2e-

+

1/2O

=2OH-AFC

PAFCMolten

CarbonateFuel

CellsOperation

Temperature:

650

degrees

CElectrolyte:

Salt

CarbonatesFuel:

Syngas

or

Hydrogen,

andAdditional: CO2

due

to

CO3

ion

usageCatalyst:

NickelPower

output:

~2MW

units

availableMolten

CarbonateFuel

CellsA

Proton

Exchange

Membrane

(PEM)

fuel

cellPEM

Fuel

CellsOperation

Temperature:

100

degrees

CElectrolyte:

PolymerFuel:

HydrogenCatalyst:

PlatinumPower

output:

50-250

kW

units

availablePEM

Fuel

CellsThe

Homo-heterogeneous

Nature

in

PEM

ElectrolytePorous

NafionH2H2OCF2OCF2CF2SO

-H+3CF2SO

-H+3OCF2CF23SO

-H+SO

H+3-CF2CF2OSO3-H+CF2CF2OAnodePorousACCathodePorousACH+H+PtO2Oad2H

Oe-HHOHHOHHOHHOOH

HH

HOH

HOH

HPtOHHe-HadH+

O(CF2CF2)(CF2CF)x

(Nafion)OHHHOHOH

HPt

clusters

on

cloth

of

porous

conducting

carbon,Loading

of

Pt:

~

30

g

m-2(Nafion)Solid

polymer

based

on

perfluoronsulphonic

acidMembrane

electrode

assembly

(MEA)EcoFC

available

in

1

to

6-cell

versions,

generates

3.5

to

19

watts

at

0.6

to

3.6

V.

Although

the

output

voltageincrements

are

the

same

as

LightFC

more

power

is

available

because

the

membrane

electrode

assembly

in

thefuel

cell

has

a

larger

active

area(roughly

14.5

square

centimetres)ECOFC-5

is

a

five

cell

stack

providing

16W

at

3V

off

hydrogen

and

oxygen.639.00EUR

Retail

Price:Commercial

MEA

for

PEMFCDirect

Methanol

Fuel

Cell

(DMFC)Probably

the widely

commercialized

typeCH3OH

+

H2O質(zhì)子交換膜3/2

O2—

+CO21.18

Ve-e-3H2OHigh

TemperatureSolid

State

Proton

ConductorsApplicationsFuel

cellsDehydrogenation

pumpselectrolyzersSensors

(H2O,

H2)Mixed

Proton

Electron

Conductorsas

hydrogen

separation

membranesNatural

gas

to

syngasHydrogen

extractionFuel

Cells

for

Mobile

PlatformsPhoto

showing

conceptual

Motorola/LANL

fuel-Superior

to

batteries

at

100

Watt-hr

(Metal

hydride)Fuel

cell

technology

improves

at

approx.

10watt-hr/yrParity

withlaptop

batteries

in

5

Yearss

(2-5

Watt-hr)

soon

to

follow

(anotherMotorola/LANL

collaborationDirect

MethanolBattery-FC

hybrid

(FC

at

1

Watt

chargSame

form

factorPower

phones

for

over

amonth?Replacable

cartridge

to

feed

fuel,

collect

water...Stationary

vs.

portable

systems-

important

issues

and

technical

requirementsPortableEnergy

density

of

fuelCompactness

and

weightDynamic

operation/transients/response

timeBuffer

or

batteryNo

run-away

reactionsFleet

vs

“private”Hydrogen

fuel

used

in

PEM

(proton-exchange

membrane)

cellsfor

vehicles.a)

Toyota

Prius

hybrid,

b)

Engine

of

PriusHydrogen

as

energy

carrierH2

+

1/2O2

H2OChemical

energy

heat

electrical

energyProductionProductionStorageUseGas;

reformingSynthesis

gasPyrolysisElectrolysisPhotolysisPressurized

gasLiquidSolid

absorbersFuel

cellsCombustionHydrogen

societyMaterial

challengesCatalystsAlloys

for

reactorsMetal

hydridesCarbonMicroporousmaterialsFuel

cellsMembranesCatalystsHydrogen

storage

materialsMetal

hydride

forming

elements”Rule

of

2

?”

for

H-H

separationHigh

H-mass

densityHigh

H-volume

densityAppropriate

p,T

stabilityReversible

absorption/desorptionmetal

hydridescarbon

based

materialsmicorporous

materials‘‘The

2?

r

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論