2022年山西省大同市平城區(qū)重點達標名校中考數(shù)學全真模擬試題含解析_第1頁
2022年山西省大同市平城區(qū)重點達標名校中考數(shù)學全真模擬試題含解析_第2頁
2022年山西省大同市平城區(qū)重點達標名校中考數(shù)學全真模擬試題含解析_第3頁
2022年山西省大同市平城區(qū)重點達標名校中考數(shù)學全真模擬試題含解析_第4頁
2022年山西省大同市平城區(qū)重點達標名校中考數(shù)學全真模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.為了解某小區(qū)小孩暑期的學習情況,王老師隨機調(diào)查了該小區(qū)8個小孩某天的學習時間,結果如下(單位:小時):1.5,1.5,3,4,2,5,2.5,4.5,關于這組數(shù)據(jù),下列結論錯誤的是()A.極差是3.5 B.眾數(shù)是1.5 C.中位數(shù)是3 D.平均數(shù)是32.如圖,在△ABC中,∠C=90°,AC=BC=3cm.動點P從點A出發(fā),以cm/s的速度沿AB方向運動到點B.動點Q同時從點A出發(fā),以1cm/s的速度沿折線ACCB方向運動到點B.設△APQ的面積為y(cm2).運動時間為x(s),則下列圖象能反映y與x之間關系的是()A. B.C. D.3.下列運算正確的是()A.a(chǎn)3?a2=a6 B.(2a)3=6a3C.(a﹣b)2=a2﹣b2 D.3a2﹣a2=2a24.下列計算正確的是()A.(a2)3=a6 B.a(chǎn)2?a3=a6 C.a(chǎn)3+a4=a7 D.(ab)3=ab35.如圖,已知數(shù)軸上的點A、B表示的實數(shù)分別為a,b,那么下列等式成立的是()A. B.C. D.6.為了解某班學生每周做家務勞動的時間,某綜合實踐活動小組對該班9名學生進行了調(diào)查,有關數(shù)據(jù)如下表.則這9名學生每周做家務勞動的時間的眾數(shù)及中位數(shù)分別是()每周做家務的時間(小時)01234人數(shù)(人)22311A.3,2.5 B.1,2 C.3,3 D.2,27.tan30°的值為()A.12 B.32 C.38.有一種球狀細菌的直徑用科學記數(shù)法表示為2.16×10﹣3米,則這個直徑是()A.216000米 B.0.00216米C.0.000216米 D.0.0000216米9.某同學將自己7次體育測試成績(單位:分)繪制成折線統(tǒng)計圖,則該同學7次測試成績的眾數(shù)和中位數(shù)分別是()A.50和48 B.50和47 C.48和48 D.48和4310.如圖:將一個矩形紙片,沿著折疊,使點分別落在點處.若,則的度數(shù)為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在ABC中,AB=AC=6,∠BAC=90°,點D、E為BC邊上的兩點,分別沿AD、AE折疊,B、C兩點重合于點F,若DE=5,則AD的長為_____.12.已知m=,n=,那么2016m﹣n=_____.13.有下列各式:①;②;③;④.其中,計算結果為分式的是_____.(填序號)14.解不等式組,則該不等式組的最大整數(shù)解是_____.15.在平面直角坐標系中,點A的坐標為(a,3),點B的坐標是(4,b),若點A與點B關于原點O對稱,則ab=_____.16.如圖,⊙O在△ABC三邊上截得的弦長相等,∠A=70°,則∠BOC=_____度.17.如圖,長方體的底面邊長分別為1cm和3cm,高為6cm.如果用一根細線從點A開始經(jīng)過4個側(cè)面纏繞一圈到達點B,那么所用細線最短需要_____cm.三、解答題(共7小題,滿分69分)18.(10分)如圖所示,正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上).(1)把△ABC沿BA方向平移后,點A移到點A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;(2)把△A1B1C1繞點A1按逆時針方向旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2;(3)如果網(wǎng)格中小正方形的邊長為1,求點B經(jīng)過(1)、(2)變換的路徑總長.19.(5分)某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.求每臺A型電腦和B型電腦的銷售利潤;該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.①求y關于x的函數(shù)關系式;②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?實際進貨時,廠家對A型電腦出廠價下調(diào)m(0<m<100)元,且限定商店最多購進A型電腦70臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設計出使這100臺電腦銷售總利潤最大的進貨方案.20.(8分)如圖,拋物線y=-x2+bx+c的頂點為C,對稱軸為直線x=1,且經(jīng)過點A(3,-1),與y軸交于點B.求拋物線的解析式;判斷△ABC的形狀,并說明理由;經(jīng)過點A的直線交拋物線于點P,交x軸于點Q,若S△OPA=2S△OQA,試求出點P的坐標.21.(10分)列方程解應用題八年級學生去距學校10km的博物館參觀,一部分學生騎自行車先走,過了20min后,其余學生乘汽車出發(fā),結果他們同時到達.已知汽車的速度是騎車學生速度的2倍,求騎車學生的速度.22.(10分)如圖,已知⊙O中,AB為弦,直線PO交⊙O于點M、N,PO⊥AB于C,過點B作直徑BD,連接AD、BM、AP.(1)求證:PM∥AD;(2)若∠BAP=2∠M,求證:PA是⊙O的切線;(3)若AD=6,tan∠M=,求⊙O的直徑.23.(12分)已知:在△ABC中,AC=BC,D,E,F(xiàn)分別是AB,AC,CB的中點.求證:四邊形DECF是菱形.24.(14分)在“母親節(jié)”期間,某校部分團員參加社會公益活動,準備購進一批許愿瓶進行銷售,并將所得利潤捐給慈善機構.根據(jù)市場調(diào)查,這種許愿瓶一段時間內(nèi)的銷售量y(個)于銷售單價x(元/個)之間的對應關系如圖所示.試判斷y與x之間的函數(shù)關系,并求出函數(shù)關系式;若許愿瓶的進價為6元/個,按照上述市場調(diào)查銷售規(guī)律,求利潤w(元)與銷售單價x(元/個)之間的函數(shù)關系式;若許愿瓶的進貨成本不超過900元,要想獲得最大利潤,試求此時這種許愿瓶的銷售單價,并求出最大利潤.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

由極差、眾數(shù)、中位數(shù)、平均數(shù)的定義對四個選項一一判斷即可.【詳解】A.極差為5﹣1.5=3.5,此選項正確;B.1.5個數(shù)最多,為2個,眾數(shù)是1.5,此選項正確;C.將式子由小到大排列為:1.5,1.5,2,2.5,3,4,4.5,5,中位數(shù)為×(2.5+3)=2.75,此選項錯誤;D.平均數(shù)為:×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此選項正確.故選C.【點睛】本題主要考查平均數(shù)、眾數(shù)、中位數(shù)、極差的概念,其中在求中位數(shù)的時候一定要將給出的數(shù)據(jù)按從大到小或者從小到大的順序排列起來再進行求解.2、D【解析】

在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,分當0<x≤3(點Q在AC上運動,點P在AB上運動)和當3≤x≤6時(點P與點B重合,點Q在CB上運動)兩種情況求出y與x的函數(shù)關系式,再結合圖象即可解答.【詳解】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,當0<x≤3時,點Q在AC上運動,點P在AB上運動(如圖1),由題意可得AP=x,AQ=x,過點Q作QN⊥AB于點N,在等腰直角三角形AQN中,求得QN=x,所以y==(0<x≤3),即當0<x≤3時,y隨x的變化關系是二次函數(shù)關系,且當x=3時,y=4.5;當3≤x≤6時,點P與點B重合,點Q在CB上運動(如圖2),由題意可得PQ=6-x,AP=3,過點Q作QN⊥BC于點N,在等腰直角三角形PQN中,求得QN=(6-x),所以y==(3≤x≤6),即當3≤x≤6時,y隨x的變化關系是一次函數(shù),且當x=6時,y=0.由此可得,只有選項D符合要求,故選D.【點睛】本題考查了動點函數(shù)圖象,解決本題要正確分析動線運動過程,然后再正確計算其對應的函數(shù)解析式,由函數(shù)的解析式對應其圖象,由此即可解答.3、D【解析】試題分析:根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加求解求解;根據(jù)積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘求解;根據(jù)完全平方公式求解;根據(jù)合并同類項法則求解.解:A、a3?a2=a3+2=a5,故A錯誤;B、(2a)3=8a3,故B錯誤;C、(a﹣b)2=a2﹣2ab+b2,故C錯誤;D、3a2﹣a2=2a2,故D正確.故選D.點評:本題考查了完全平方公式,合并同類項法則,同底數(shù)冪的乘法,積的乘方的性質(zhì),熟記性質(zhì)與公式并理清指數(shù)的變化是解題的關鍵.4、A【解析】分析:根據(jù)冪的乘方、同底數(shù)冪的乘法、積的乘方公式即可得出答案.詳解:A、冪的乘方法則,底數(shù)不變,指數(shù)相乘,原式計算正確;B、同底數(shù)冪的乘法,底數(shù)不變,指數(shù)相加,原式=,故錯誤;C、不是同類項,無法進行加法計算;D、積的乘方等于乘方的積,原式=,計算錯誤;故選A.點睛:本題主要考查的是冪的乘方、同底數(shù)冪的乘法、積的乘方計算法則,屬于基礎題型.理解各種計算法則是解題的關鍵.5、B【解析】

根據(jù)圖示,可得:b<0<a,|b|>|a|,據(jù)此判斷即可.【詳解】∵b<0<a,|b|>|a|,

∴a+b<0,

∴|a+b|=-a-b.

故選B.【點睛】此題主要考查了實數(shù)與數(shù)軸的特征和應用,以及絕對值的含義和求法,要熟練掌握.6、D【解析】試題解析:表中數(shù)據(jù)為從小到大排列.數(shù)據(jù)1小時出現(xiàn)了三次最多為眾數(shù);1處在第5位為中位數(shù).所以本題這組數(shù)據(jù)的中位數(shù)是1,眾數(shù)是1.故選D.考點:1.眾數(shù);1.中位數(shù).7、D【解析】

直接利用特殊角的三角函數(shù)值求解即可.【詳解】tan30°=33,故選:D【點睛】本題考查特殊角的三角函數(shù)的值的求法,熟記特殊的三角函數(shù)值是解題的關鍵.8、B【解析】

絕對值小于1的負數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】2.16×10﹣3米=0.00216米.故選B.【點睛】考查了用科學記數(shù)法表示較小的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.9、A【解析】

由折線統(tǒng)計圖,可得該同學7次體育測試成績,進而求出眾數(shù)和中位數(shù)即可.【詳解】由折線統(tǒng)計圖,得:42,43,47,48,49,50,50,7次測試成績的眾數(shù)為50,中位數(shù)為48,故選:A.【點睛】本題考查了眾數(shù)和中位數(shù),解題的關鍵是利用折線統(tǒng)計圖獲取有效的信息.10、B【解析】根據(jù)折疊前后對應角相等可知.

解:設∠ABE=x,

根據(jù)折疊前后角相等可知,∠C1BE=∠CBE=50°+x,

所以50°+x+x=90°,

解得x=20°.

故選B.“點睛”本題考查圖形的翻折變換,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.二、填空題(共7小題,每小題3分,滿分21分)11、或【解析】

過點A作AG⊥BC,垂足為G,根據(jù)等腰直角三角形的性質(zhì)可得AG=BG=CG=6,設BD=x,則DF=BD=x,EF=7-x,然后利用勾股定理可得到關于x的方程,從而求得DG的長,繼而可求得AD的長.【詳解】如圖所示,過點A作AG⊥BC,垂足為G,∵AB=AC=6,∠BAC=90°,∴BC==12,∵AB=AC,AG⊥BC,∴AG=BG=CG=6,設BD=x,則EC=12-DE-BD=12-5-x=7-x,由翻折的性質(zhì)可知:∠DFA=∠B=∠C=∠AFE=45°,DB=DF,EF=FC,∴DF=x,EF=7-x,在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,解得:x=3或x=4,當BD=3時,DG=3,AD=,當BD=4時,DG=2,AD=,∴AD的長為或,故答案為:或.【點睛】本題考查了翻折的性質(zhì)、勾股定理的應用、等腰直角三角形的性質(zhì),正確添加輔助線,靈活運用勾股定理是解題的關鍵.12、1【解析】

根據(jù)積的乘方的性質(zhì)將m的分子轉(zhuǎn)化為以3和5為底數(shù)的冪的積,然后化簡從而得到m=n,再根據(jù)任何非零數(shù)的零次冪等于1解答.【詳解】解:∵m===,∴m=n,∴2016m-n=20160=1.故答案為:1【點睛】本題考查了同底數(shù)冪的除法,積的乘方的性質(zhì),難點在于轉(zhuǎn)化m的分母并得到m=n.13、②④【解析】

根據(jù)分式的定義,將每個式子計算后,即可求解.【詳解】=1不是分式,=,=3不是分式,=故選②④.【點睛】本題考查分式的判斷,解題的關鍵是清楚分式的定義.14、x=1.【解析】

先求出每個不等式的解集,再確定其公共解,得到不等式組的解集,然后求其整數(shù)解.【詳解】,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整數(shù)解為0,1,2,1,則該不等式組的最大整數(shù)解是x=1.故答案為:x=1.【點睛】考查不等式組的解法及整數(shù)解的確定.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.15、1【解析】【分析】直接利用關于原點對稱點的性質(zhì)得出a,b的值,進而得出答案.【詳解】∵點A的坐標為(a,3),點B的坐標是(4,b),點A與點B關于原點O對稱,∴a=﹣4,b=﹣3,則ab=1,故答案為1.【點睛】本題考查了關于原點對稱的點的坐標,熟知關于原點對稱的兩點的橫、縱坐標互為相反數(shù)是解題的關鍵.16、125【解析】

解:過O作OM⊥AB,ON⊥AC,OP⊥BC,垂足分別為M,N,P∵∠A=70°,∠B+∠C=180°?∠A=110°∵O在△ABC三邊上截得的弦長相等,∴OM=ON=OP,∴O是∠B,∠C平分線的交點∴∠BOC=180°?12(∠B+∠C)=180°?12×110°=125°.故答案為:125°【點睛】本題考查了圓心角、弧、弦的關系,三角形內(nèi)角和定理,角平分線的性質(zhì),解題的關鍵是掌握它們的性質(zhì)和定理.17、1【解析】

要求所用細線的最短距離,需將長方體的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結果.【詳解】解:將長方體展開,連接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根據(jù)兩點之間線段最短,AB′==1cm.故答案為1.考點:平面展開-最短路徑問題.三、解答題(共7小題,滿分69分)18、(1)(2)作圖見解析;(3).【解析】

(1)利用平移的性質(zhì)畫圖,即對應點都移動相同的距離.(2)利用旋轉(zhuǎn)的性質(zhì)畫圖,對應點都旋轉(zhuǎn)相同的角度.(3)利用勾股定理和弧長公式求點B經(jīng)過(1)、(2)變換的路徑總長.【詳解】解:(1)如答圖,連接AA1,然后從C點作AA1的平行線且A1C1=AC,同理找到點B1,分別連接三點,△A1B1C1即為所求.(2)如答圖,分別將A1B1,A1C1繞點A1按逆時針方向旋轉(zhuǎn)90°,得到B2,C2,連接B2C2,△A1B2C2即為所求.(3)∵,∴點B所走的路徑總長=.考點:1.網(wǎng)格問題;2.作圖(平移和旋轉(zhuǎn)變換);3.勾股定理;4.弧長的計算.19、(1)每臺A型100元,每臺B150元;(2)34臺A型和66臺B型;(3)70臺A型電腦和30臺B型電腦的銷售利潤最大【解析】

(1)設每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據(jù)題意列出方程組求解,(2)①據(jù)題意得,y=﹣50x+15000,②利用不等式求出x的范圍,又因為y=﹣50x+15000是減函數(shù),所以x取34,y取最大值,(3)據(jù)題意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三種情況討論,①當0<m<50時,y隨x的增大而減小,②m=50時,m﹣50=0,y=15000,③當50<m<100時,m﹣50>0,y隨x的增大而增大,分別進行求解.【詳解】解:(1)設每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據(jù)題意得解得答:每臺A型電腦銷售利潤為100元,每臺B型電腦的銷售利潤為150元.(2)①據(jù)題意得,y=100x+150(100﹣x),即y=﹣50x+15000,②據(jù)題意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y隨x的增大而減小,∵x為正整數(shù),∴當x=34時,y取最大值,則100﹣x=66,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.(3)據(jù)題意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①當0<m<50時,y隨x的增大而減小,∴當x=34時,y取最大值,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.②m=50時,m﹣50=0,y=15000,即商店購進A型電腦數(shù)量滿足33≤x≤70的整數(shù)時,均獲得最大利潤;③當50<m<100時,m﹣50>0,y隨x的增大而增大,∴當x=70時,y取得最大值.即商店購進70臺A型電腦和30臺B型電腦的銷售利潤最大.【點睛】本題主要考查了一次函數(shù)的應用,二元一次方程組及一元一次不等式的應用,解題的關鍵是根據(jù)一次函數(shù)x值的增大而確定y值的增減情況.20、(1)y=-x2+2x+2;(2)詳見解析;(3)點P的坐標為(1+,1)、(1-,1)、(1+,-3)或(1-,-3).【解析】

(1)根據(jù)題意得出方程組,求出b、c的值,即可求出答案;(2)求出B、C的坐標,根據(jù)點的坐標求出AB、BC、AC的值,根據(jù)勾股定理的逆定理求出即可;(3)分為兩種情況,畫出圖形,根據(jù)相似三角形的判定和性質(zhì)求出PE的長,即可得出答案.【詳解】解:(1)由題意得:,解得:,∴拋物線的解析式為y=-x2+2x+2;(2)∵由y=-x2+2x+2得:當x=0時,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB=3,BC=,AC=2,∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如圖,當點Q在線段AP上時,過點P作PE⊥x軸于點E,AD⊥x軸于點D∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴==1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(1+,1)或(1-,1),②如圖,當點Q在PA延長線上時,過點P作PE⊥x軸于點E,AD⊥x軸于點D∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴==3,∴PE=3AD=3∵由-x2+2x+2=-3得:x=1±,∴P(1+,-3),或(1-,-3),綜上可知:點P的坐標為(1+,1)、(1-,1)、(1+,-3)或(1-,-3).【點睛】本題考查了二次函數(shù)的圖象和性質(zhì),用待定系數(shù)法求二次函數(shù)的解析式,相似三角形的性質(zhì)和判定等知識點,能求出符合的所有情況是解此題的關鍵.21、15【解析】試題分析:設騎車學生的速度為,利用時間關系列方程解應用題,一定要檢驗.試題解析:解:設騎車學生的速度為,由題意得,解得.經(jīng)檢驗是原方程的解.答:騎車學生的速度為15.22、(1)證明見解析;(2)證明見解析;(3)1;【解析】

(1)根據(jù)平行線的判定求出即可;(2)連接OA,求出∠OAP=∠BAP+∠OAB=∠BOC+∠OBC=90°,根據(jù)切線的判定得出即可;(3)設BC=x,CM=2x,根據(jù)相似三角形的性質(zhì)和判定求出NC=x,求出MN=2x+x=2.1x,OM=MN=1.21x,OC=0.71x,根據(jù)三角形的中位線性質(zhì)得出0.71x=AD=3,求出x即可.【詳解】(1)∵BD是直徑,∴∠DAB=90°,∵PO⊥AB,∴∠DAB=∠MCB=90°,∴PM∥AD;(2)連接OA,∵OB=OM,∴∠M=∠OBM,∴∠BON=2∠M,∵∠BAP=2∠M,∴∠BON=∠BAP,∵PO⊥AB,∴∠ACO=90°,∴∠AON+∠OAC=90°,∵OA=OB,∴∠BON=∠AON,∴∠BAP=∠AON,∴∠BAP+∠OAC=90°,∴∠OAP=90°,∵OA是半徑,∴PA是⊙O的切線;(3)連接BN,則∠MBN=90°.∵tan∠M=,∴=,設BC=x,CM=2x,∵M

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論