




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
LearningfromObservations
(chapter18)Autumn2012Instructor:WangXiaolongHarbinInstituteofTechnology,ShenzhenGraduateSchoolIntelligentComputationResearchCenter(HITSGSICRC)
LearningfromObservations
(chOutlinesLearningagentsInductivelearningDecisiontreelearningMeasuringlearningperformanceOutlinesLearningagentsLearningLearningisessentialforunknownenvironments,i.e.,whendesignerlacksomniscienceLearningisusefulasasystemconstructionmethod,i.e.,exposetheagenttorealityratherthantryingtowriteitdownLearningmodifiestheagent'sdecisionmechanismstoimproveperformanceLearningLearningisessentialLearningagentsLearningagentsLearningelementDesignofalearningelementisaffectedbyWhichcomponentsoftheperformanceelementaretobelearnedWhatfeedbackisavailabletolearnthesecomponentsWhatrepresentationisusedforthecomponentsTypeoffeedback: Supervisedlearning:involveslearningafunctionfromexamplesofitsinputandoutputs.Unsupervisedlearning:involveslearningpatternsintheinputwhennospecificoutputvaluesaresupplied.Reinforcementlearning:learnfromrewards(reinforcement)LearningelementDesignofaleInductivelearningSimplestform:learnafunctionfromexamplesfisthetargetfunctionAnexampleisapair(x,f(x))Problem:findahypothesishsuchthath≈fgivenatraining
setofexamples(Thisisahighlysimplifiedmodelofreallearning:IgnorespriorknowledgeAssumesexamplesaregiven)InductivelearningSimplestforInductivelearningmethodConstruct/adjusth
toagreewithf
ontrainingset (hisconsistentifitagreeswithf
onallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth
toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth
toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth
toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth
toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth
toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:Ockham’srazor:preferthesimplesthypothesisconsistentwithdata
--InLatin,itmeans“Entitiesarenottobemultipliedbeyondnecessity”InductivelearningmethodConstLearningdecisiontreesProblem:decidewhethertowaitforatableatarestaurant,basedonthefollowingattributes:Alternate:isthereanalternativerestaurantnearby?Bar:isthereacomfortablebarareatowaitin?Fri/Sat:istodayFridayorSaturday?Hungry:arewehungry?Patrons:numberofpeopleintherestaurant(None,Some,Full)Price:pricerange($,$$,$$$)Raining:isitrainingoutside?Reservation:havewemadeareservation?Type:kindofrestaurant(French,Italian,Thai,Burger)WaitEstimate:estimatedwaitingtime(0-10,10-30,30-60,>60)LearningdecisiontreesProblemAttribute-basedrepresentationsExamplesdescribedbyattributevalues(Boolean,discrete,continuous)E.g.,situationswhereIwill/won'twaitforatable:Classificationofexamplesispositive(T)ornegative(F)Attribute-basedrepresentationDecisiontreesOnepossiblerepresentationforhypothesesE.g.,hereisthe“true”treefordecidingwhethertowait:DecisiontreesOnepossiblerepExpressivenessDecisiontreescanexpressanyfunctionoftheinputattributes.E.g.,forBooleanfunctions,truthtablerow→pathtoleaf:Trivially,thereisaconsistentdecisiontreeforanytrainingsetwithonepathtoleafforeachexample(unlessf
nondeterministicinx)butitprobablywon'tgeneralizetonewexamplesPrefertofindmorecompactdecisiontreesExpressivenessDecisiontreescHypothesisspacesHowmanydistinctdecisiontreeswithnBooleanattributes?=numberofBooleanfunctions=numberofdistincttruthtableswith2nrows=22nE.g.,with6Booleanattributes,thereare18,446,744,073,709,551,616treesMoreexpressivehypothesisspaceincreaseschancethattargetfunctioncanbeexpressedincreasesnumberofhypothesesconsistentwithtrainingset
maygetworsepredictionsHypothesisspacesHowmanydistDecisiontreelearningAim:findasmalltreeconsistentwiththetrainingexamplesIdea:(recursively)choose"mostsignificant"attributeasrootof(sub)treeDecisiontreelearningAim:finChoosinganattributeIdea:agoodattributesplitstheexamplesintosubsetsthatare(ideally)"allpositive"or"allnegative"Patrons?isabetterchoiceChoosinganattributeIdea:agUsinginformationtheoryInformationanswersquestionsThemorecluelessIamabouttheanswerinitially,themoreinformationiscontainedintheanswerInformationContent(Entropy):I(P(v1),…,P(vn))=Σi=1-P(vi)log2P(vi)Foratrainingsetcontainingppositiveexamplesandnnegativeexamples:UsinginformationtheoryInformInformationgainAchosenattributeAdividesthetrainingsetEintosubsetsE1,…,EvaccordingtotheirvaluesforA,whereA
hasvdistinctvalues.InformationGain(IG)orreductioninentropyfromtheattributetest:ChoosetheattributewiththelargestIGInformationgainAchosenattriInformationgainForthetrainingset,p=n=6,I(6/12,6/12)=1bitConsidertheattributesPatronsandType(andotherstoo):PatronshasthehighestIGofallattributesandsoischosenbytheDTLalgorithmastherootInformationgainForthetrainiExamplecontd.Decisiontreelearnedfromthe12examples:Substantiallysimplerthan“true”tree---amorecomplexhypothesisisn’tjustifiedbysmallamountofdataExamplecontd.DecisiontreelePerformancemeasurementHowdoweknowthath≈f
?Usetheoremsofcomputational/statisticallearningtheoryTryhonanewtestsetofexamples(usesamedistributionoverexamplespaceastrainingset)Learningcurve=%correctontestsetasafunctionoftrainingsetsizePerformancemeasurementHowdoSummaryLearningneededforunknownenvironments,lazydesignersLearningagent=performanceelement+learningelementForsupervisedlearning,theaimistofindasimplehypothesisapproximatelyconsistentwithtrainingexamplesDecisiontreelearningusinginformationgainLearningperformance=predictionaccuracymeasuredontestsetSummaryLearningneededforunkAssignmentsEx18.3AssignmentsEx18.3LearningfromObservations
(chapter18)Autumn2012Instructor:WangXiaolongHarbinInstituteofTechnology,ShenzhenGraduateSchoolIntelligentComputationResearchCenter(HITSGSICRC)
LearningfromObservations
(chOutlinesLearningagentsInductivelearningDecisiontreelearningMeasuringlearningperformanceOutlinesLearningagentsLearningLearningisessentialforunknownenvironments,i.e.,whendesignerlacksomniscienceLearningisusefulasasystemconstructionmethod,i.e.,exposetheagenttorealityratherthantryingtowriteitdownLearningmodifiestheagent'sdecisionmechanismstoimproveperformanceLearningLearningisessentialLearningagentsLearningagentsLearningelementDesignofalearningelementisaffectedbyWhichcomponentsoftheperformanceelementaretobelearnedWhatfeedbackisavailabletolearnthesecomponentsWhatrepresentationisusedforthecomponentsTypeoffeedback: Supervisedlearning:involveslearningafunctionfromexamplesofitsinputandoutputs.Unsupervisedlearning:involveslearningpatternsintheinputwhennospecificoutputvaluesaresupplied.Reinforcementlearning:learnfromrewards(reinforcement)LearningelementDesignofaleInductivelearningSimplestform:learnafunctionfromexamplesfisthetargetfunctionAnexampleisapair(x,f(x))Problem:findahypothesishsuchthath≈fgivenatraining
setofexamples(Thisisahighlysimplifiedmodelofreallearning:IgnorespriorknowledgeAssumesexamplesaregiven)InductivelearningSimplestforInductivelearningmethodConstruct/adjusth
toagreewithf
ontrainingset (hisconsistentifitagreeswithf
onallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth
toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth
toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth
toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth
toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:InductivelearningmethodConstInductivelearningmethodConstruct/adjusth
toagreewithfontrainingset (hisconsistentifitagreeswithfonallexamples)E.g.,curvefitting:Ockham’srazor:preferthesimplesthypothesisconsistentwithdata
--InLatin,itmeans“Entitiesarenottobemultipliedbeyondnecessity”InductivelearningmethodConstLearningdecisiontreesProblem:decidewhethertowaitforatableatarestaurant,basedonthefollowingattributes:Alternate:isthereanalternativerestaurantnearby?Bar:isthereacomfortablebarareatowaitin?Fri/Sat:istodayFridayorSaturday?Hungry:arewehungry?Patrons:numberofpeopleintherestaurant(None,Some,Full)Price:pricerange($,$$,$$$)Raining:isitrainingoutside?Reservation:havewemadeareservation?Type:kindofrestaurant(French,Italian,Thai,Burger)WaitEstimate:estimatedwaitingtime(0-10,10-30,30-60,>60)LearningdecisiontreesProblemAttribute-basedrepresentationsExamplesdescribedbyattributevalues(Boolean,discrete,continuous)E.g.,situationswhereIwill/won'twaitforatable:Classificationofexamplesispositive(T)ornegative(F)Attribute-basedrepresentationDecisiontreesOnepossiblerepresentationforhypothesesE.g.,hereisthe“true”treefordecidingwhethertowait:DecisiontreesOnepossiblerepExpressivenessDecisiontreescanexpressanyfunctionoftheinputattributes.E.g.,forBooleanfunctions,truthtablerow→pathtoleaf:Trivially,thereisaconsistentdecisiontreeforanytrainingsetwithonepathtoleafforeachexample(unlessf
nondeterministicinx)butitprobablywon'tgeneralizetonewexamplesPrefertofindmorecompactdecisiontreesExpressivenessDecisiontreescHypothesisspacesHowmanydistinctdecisiontreeswithnBooleanattributes?=numberofBooleanfunctions=numberofdistincttruthtableswith2nrows=22nE.g.,with6Booleanattributes,thereare18,446,744,073,709,551,616treesMoreexpressivehypothesisspaceincreaseschancethattargetfunctioncanbeexpressedincreasesnumberofhypothesesconsistentwithtrainingset
maygetworsepredictionsHypothesisspacesHowmanydistDecisiontreelearningAim:findasmalltreeconsistentwiththetrainingexamplesIdea:(recursively)choose"mostsignificant"attributeasrootof(sub)treeDecisiontreelearningAim:finChoosinganattributeIdea:agoodattributesplitstheexamplesintosubsetsthatare(ideally)"allpositive"or"allnegative"Patrons?isabetterchoiceChoosinganattributeIdea:agUsinginformationtheoryInformationanswersquestionsThemorecluelessIamabouttheanswerinitially,themoreinformationiscontainedintheanswerInformationContent(Entropy):I(P(v1),…,P(vn))=Σi=1-P(vi)log2P(vi)Foratrainingsetcontainingppositiveexamplesandnnegativeexamples:UsinginformationtheoryInformInformationgainAchosenattributeAdividesthetrainingsetEintosubsetsE1,…,Evaccordingto
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年03月國家衛(wèi)生健康委醫(yī)院管理研究所招聘高校應(yīng)屆畢業(yè)生2人筆試歷年專業(yè)考點(難、易錯點)附帶答案詳解
- 2025年02月濟南市萊蕪人民醫(yī)院公開招聘人員(控制總量)(30人)筆試歷年專業(yè)考點(難、易錯點)附帶答案詳解
- 軟式內(nèi)鏡培訓課件
- 風力運行知識培訓課件
- 榆林市第八幼兒園招聘考試真題2024
- 2025至2030廣域照明行業(yè)市場深度研究與戰(zhàn)略咨詢分析報告
- 2024年棗莊市山亭區(qū)青年招募筆試真題
- 2024年廣州市從化區(qū)教育局招聘事業(yè)單位編制教師筆試真題
- 東莞市的數(shù)學試卷
- 電中初二數(shù)學試卷
- 2025年安徽省中考數(shù)學試卷真題(含標準答案)
- T-GXAS 421-2022 成人急性中毒洗胃操作技術(shù)規(guī)范
- 河道生態(tài)護岸設(shè)計概況
- 光伏組件開路電壓測試記錄
- 應(yīng)急預(yù)案演練記錄表范例
- 鐵程檢用表(共47頁)
- 霍尼韋爾DC中文說明書
- 2022小升初語文訓練真題試卷
- 抵押(質(zhì)押)物品清單
- 經(jīng)濟責任審計培訓課件(共46頁).ppt
- 施工升降機安裝監(jiān)理旁站記錄(范本)(共1頁)
評論
0/150
提交評論