山東省無棣縣2022年中考聯(lián)考數(shù)學試題含解析_第1頁
山東省無棣縣2022年中考聯(lián)考數(shù)學試題含解析_第2頁
山東省無棣縣2022年中考聯(lián)考數(shù)學試題含解析_第3頁
山東省無棣縣2022年中考聯(lián)考數(shù)學試題含解析_第4頁
山東省無棣縣2022年中考聯(lián)考數(shù)學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優(yōu)惠賣出,結果每件作服裝仍可獲利15元,則這種服裝每件的成本是()A.120元 B.125元 C.135元 D.140元2.2cos30°的值等于()A.1 B. C. D.23.一個圓錐的側面積是12π,它的底面半徑是3,則它的母線長等于()A.2B.3C.4D.64.運用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是(

)A. B. C. D.5.拋物線y=x2+2x+3的對稱軸是()A.直線x=1 B.直線x=-1C.直線x=-2 D.直線x=26.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段AC的長為()A.4 B.4 C.6 D.47.設0<k<2,關于x的一次函數(shù)y=(k-2)x+2,當1≤x≤2時,y的最小值是()A.2k-2B.k-1C.kD.k+18.下列運算正確的是()A.a(chǎn)2?a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=69.如圖,直線y=34x+3交x軸于A點,將一塊等腰直角三角形紙板的直角頂點置于原點O,另兩個頂點M、N恰落在直線y=3A.17 B.16 C.110.下列說法中,正確的是()A.不可能事件發(fā)生的概率為0B.隨機事件發(fā)生的概率為C.概率很小的事件不可能發(fā)生D.投擲一枚質地均勻的硬幣100次,正面朝上的次數(shù)一定為50次11.為了解當?shù)貧鉁刈兓闆r,某研究小組記錄了寒假期間連續(xù)6天的最高氣溫,結果如下(單位:﹣6,﹣1,x,2,﹣1,1.若這組數(shù)據(jù)的中位數(shù)是﹣1,則下列結論錯誤的是()A.方差是8 B.極差是9 C.眾數(shù)是﹣1 D.平均數(shù)是﹣112.下面的圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.B.C.D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知在Rt△ABC中,∠ACB=90°,AB=4,分別以AC,BC為直徑作半圓,面積分別記為S1,S2,則S1+S2等_________.14.如圖所示,平行四邊形ABCD中,E、F是對角線BD上兩點,連接AE、AF、CE、CF,添加__________條件,可以判定四邊形AECF是平行四邊形.(填一個符合要求的條件即可)15.對角線互相平分且相等的四邊形是()A.菱形 B.矩形 C.正方形 D.等腰梯形16.一個長方體的三視圖如圖所示,若其俯視圖為正方形,則這個長方體的體積為______.17.在△ABC中,AB=AC,把△ABC折疊,使點B與點A重合,折痕交AB于點M,交BC于點N.如果△CAN是等腰三角形,則∠B的度數(shù)為___________.18.關于x的一元二次方程(k-1)x2+6x+k2-k=0的一個根是0,則k的值是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)解方程.20.(6分)東東玩具商店用500元購進一批悠悠球,很受中小學生歡迎,悠悠球很快售完,接著又用900元購進第二批這種悠悠球,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進價多了5元.求第一批悠悠球每套的進價是多少元;如果這兩批悠悠球每套售價相同,且全部售完后總利潤不低于25%,那么每套悠悠球的售價至少是多少元?21.(6分)如圖,AB是⊙O直徑,BC⊥AB于點B,點C是射線BC上任意一點,過點C作CD切⊙O于點D,連接AD.求證:BC=CD;若∠C=60°,BC=3,求AD的長.22.(8分)如圖,圓O是的外接圓,AE平分交圓O于點E,交BC于點D,過點E作直線.(1)判斷直線l與圓O的關系,并說明理由;(2)若的平分線BF交AD于點F,求證:;(3)在(2)的條件下,若,,求AF的長.23.(8分)如圖1,在圓中,垂直于弦,為垂足,作,與的延長線交于.(1)求證:是圓的切線;(2)如圖2,延長,交圓于點,點是劣弧的中點,,,求的長.24.(10分)如圖1,已知扇形MON的半徑為,∠MON=90°,點B在弧MN上移動,聯(lián)結BM,作OD⊥BM,垂足為點D,C為線段OD上一點,且OC=BM,聯(lián)結BC并延長交半徑OM于點A,設OA=x,∠COM的正切值為y.(1)如圖2,當AB⊥OM時,求證:AM=AC;(2)求y關于x的函數(shù)關系式,并寫出定義域;(3)當△OAC為等腰三角形時,求x的值.25.(10分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A和點B(3,0),與y軸交于點C(0,3),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接DB.(1)求此拋物線的解析式及頂點D的坐標;(2)點M是拋物線上的動點,設點M的橫坐標為m.①當∠MBA=∠BDE時,求點M的坐標;②過點M作MN∥x軸,與拋物線交于點N,P為x軸上一點,連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.26.(12分)為響應學校全面推進書香校園建設的號召,班長李青隨機調查了若干同學一周課外閱讀的時間(單位:小時),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(:,:,:,:),根據(jù)圖中信息,解答下列問題:(1)這項工作中被調查的總人數(shù)是多少?(2)補全條形統(tǒng)計圖,并求出表示組的扇形統(tǒng)計圖的圓心角的度數(shù);(3)如果李青想從組的甲、乙、丙、丁四人中先后隨機選擇兩人做讀書心得發(fā)言代表,請用列表或畫樹狀圖的方法求出選中甲的概率.27.(12分)解不等式組:,并把解集在數(shù)軸上表示出來.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題分析:通過理解題意可知本題的等量關系,即每件作服裝仍可獲利=按成本價提高40%后標價,又以8折賣出,根據(jù)這兩個等量關系,可列出方程,再求解.解:設這種服裝每件的成本是x元,根據(jù)題意列方程得:x+15=(x+40%x)×80%解這個方程得:x=125則這種服裝每件的成本是125元.故選B.考點:一元一次方程的應用.2、C【解析】分析:根據(jù)30°角的三角函數(shù)值代入計算即可.詳解:2cos30°=2×=.故選C.點睛:此題主要考查了特殊角的三角函數(shù)值的應用,熟記30°、45°、60°角的三角函數(shù)值是解題關鍵.3、C【解析】設母線長為R,底面半徑是3cm,則底面周長=6π,側面積=3πR=12π,

∴R=4cm.故選C.4、A【解析】【分析】作直徑CG,連接OD、OE、OF、DG,則根據(jù)圓周角定理求得DG的長,證明DG=EF,則S扇形ODG=S扇形OEF,然后根據(jù)三角形的面積公式證明S△OCD=S△ACD,S△OEF=S△AEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.【詳解】作直徑CG,連接OD、OE、OF、DG.∵CG是圓的直徑,∴∠CDG=90°,則DG==8,又∵EF=8,∴DG=EF,∴,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓=π×52=,故選A.【點睛】本題考查扇形面積的計算,圓周角定理.本題中找出兩個陰影部分面積之間的聯(lián)系是解題的關鍵.5、B【解析】

根據(jù)拋物線的對稱軸公式:計算即可.【詳解】解:拋物線y=x2+2x+3的對稱軸是直線故選B.【點睛】此題考查的是求拋物線的對稱軸,掌握拋物線的對稱軸公式是解決此題的關鍵.6、B【解析】

由已知條件可得,可得出,可求出AC的長.【詳解】解:由題意得:∠B=∠DAC,∠ACB=∠ACD,所以,根據(jù)“相似三角形對應邊成比例”,得,又AD是中線,BC=8,得DC=4,代入可得AC=,故選B.【點睛】本題主要考查相似三角形的判定與性質.靈活運用相似的性質可得出解答.7、A【解析】

先根據(jù)0<k<1判斷出k-1的符號,進而判斷出函數(shù)的增減性,根據(jù)1≤x≤1即可得出結論.【詳解】∵0<k<1,∴k-1<0,∴此函數(shù)是減函數(shù),∵1≤x≤1,∴當x=1時,y最小=1(k-1)+1=1k-1.故選A.【點睛】本題考查的是一次函數(shù)的性質,熟知一次函數(shù)y=kx+b(k≠0)中,當k<0,b>0時函數(shù)圖象經(jīng)過一、二、四象限是解答此題的關鍵.8、D【解析】

運用正確的運算法則即可得出答案.【詳解】A、應該為a5,錯誤;B、為2,錯誤;C、為4,錯誤;D、正確,所以答案選擇D項.【點睛】本題考查了四則運算法則,熟悉掌握是解決本題的關鍵.9、A【解析】

過O作OC⊥AB于C,過N作ND⊥OA于D,設N的坐標是(x,34x+3),得出DN=34x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面積公式得出AO×OB=AB×OC,代入求出OC,根據(jù)sin45°=OCON,求出ON,在Rt△NDO中,由勾股定理得出(34x+3)2+(-x)2=(122【詳解】過O作OC⊥AB于C,過N作ND⊥OA于D,∵N在直線y=34∴設N的坐標是(x,34則DN=34y=34當x=0時,y=3,當y=0時,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面積公式得:AO×OB=AB×OC,∴3×4=5OC,OC=125∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=OCON∴ON=122在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(34x+3)2+(-x)2=(1225解得:x1=-8425,x2=12∵N在第二象限,∴x只能是-842534x+3=12即ND=1225,OD=84tan∠AON=NDOD故選A.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征,勾股定理,三角形的面積,解直角三角形等知識點的運用,主要考查學生運用這些性質進行計算的能力,題目比較典型,綜合性比較強.10、A【解析】試題分析:不可能事件發(fā)生的概率為0,故A正確;隨機事件發(fā)生的概率為在0到1之間,故B錯誤;概率很小的事件也可能發(fā)生,故C錯誤;投擲一枚質地均勻的硬幣100次,正面向上的次數(shù)為50次是隨機事件,D錯誤;故選A.考點:隨機事件.11、A【解析】根據(jù)題意可知x=-1,

平均數(shù)=(-6-1-1-1+2+1)÷6=-1,

∵數(shù)據(jù)-1出現(xiàn)兩次最多,

∴眾數(shù)為-1,

極差=1-(-6)=2,

方差=[(-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2]=2.

故選A.12、B【解析】試題解析:A.是軸對稱圖形但不是中心對稱圖形B.既是軸對稱圖形又是中心對稱圖形;C.是中心對稱圖形,但不是軸對稱圖形;D.是軸對稱圖形不是中心對稱圖形;故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】試題解析:所以故答案為14、BE=DF【解析】可以添加的條件有BE=DF等;證明:∵四邊形ABCD是平行四邊形,∴AB=CD,∠ABD=∠CDB;又∵BE=DF,∴△ABE≌△CDF(SAS).∴AE=CF,∠AEB=∠CFD.

∴∠AEF=∠CFE.∴AE∥CF;∴四邊形AECF是平行四邊形.(一組對邊平行且相等的四邊形是平行四邊形)故答案為BE=DF.15、B【解析】

根據(jù)平行四邊形的判定與矩形的判定定理,即可求得答案.【詳解】∵對角線互相平分的四邊形是平行四邊形,對角線相等的平行四邊形是矩形,∴對角線相等且互相平分的四邊形一定是矩形.故選B.【點睛】此題考查了平行四邊形,矩形,菱形以及等腰梯形的判定定理.此題比較簡單,解題的關鍵是熟記定理.16、1.【解析】試題解析:設俯視圖的正方形的邊長為.∵其俯視圖為正方形,從主視圖可以看出,正方形的對角線長為∴解得∴這個長方體的體積為4×3=1.17、或.【解析】

MN是AB的中垂線,則△ABN是等腰三角形,且NA=NB,即可得到∠B=∠BAN=∠C.然后對△ANC中的邊進行討論,然后在△ABC中,利用三角形內角和定理即可求得∠B的度數(shù).解:∵把△ABC折疊,使點B與點A重合,折痕交AB于點M,交BC于點N,∴MN是AB的中垂線.∴NB=NA.∴∠B=∠BAN,∵AB=AC∴∠B=∠C.設∠B=x°,則∠C=∠BAN=x°.1)當AN=NC時,∠CAN=∠C=x°.則在△ABC中,根據(jù)三角形內角和定理可得:4x=180,解得:x=45°則∠B=45°;2)當AN=AC時,∠ANC=∠C=x°,而∠ANC=∠B+∠BAN,故此時不成立;3)當CA=CN時,∠NAC=∠ANC=.在△ABC中,根據(jù)三角形內角和定理得到:x+x+x+=180,解得:x=36°.故∠B的度數(shù)為45°或36°.18、2.【解析】試題解析:由于關于x的一元二次方程的一個根是2,把x=2代入方程,得,解得,k2=2,k2=2當k=2時,由于二次項系數(shù)k﹣2=2,方程不是關于x的二次方程,故k≠2.所以k的值是2.故答案為2.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、原分式方程無解.【解析】

根據(jù)解分式方程的方法可以解答本方程,去分母將分式方程化為整式方程,解整式方程,驗證.【詳解】方程兩邊乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3即:x2+2x﹣x2﹣x+2=3整理,得x=1檢驗:當x=1時,(x﹣1)(x+2)=0,∴原方程無解.【點睛】本題考查解分式方程,解題的關鍵是明確解放式方程的計算方法.20、(1)第一批悠悠球每套的進價是25元;(2)每套悠悠球的售價至少是1元.【解析】分析:(1)設第一批悠悠球每套的進價是x元,則第二批悠悠球每套的進價是(x+5)元,根據(jù)數(shù)量=總價÷單價結合第二批購進數(shù)量是第一批數(shù)量的1.5倍,即可得出關于x的分式方程,解之經(jīng)檢驗后即可得出結論;(2)設每套悠悠球的售價為y元,根據(jù)銷售收入-成本=利潤結合全部售完后總利潤不低于25%,即可得出關于y的一元一次不等式,解之取其中的最小值即可得出結論.詳解:(1)設第一批悠悠球每套的進價是x元,則第二批悠悠球每套的進價是(x+5)元,根據(jù)題意得:,解得:x=25,經(jīng)檢驗,x=25是原分式方程的解.答:第一批悠悠球每套的進價是25元.(2)設每套悠悠球的售價為y元,根據(jù)題意得:500÷25×(1+1.5)y-500-900≥(500+900)×25%,解得:y≥1.答:每套悠悠球的售價至少是1元.點睛:本題考查了分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程是解題的關鍵;(2)根據(jù)各數(shù)量之間的關系,正確列出一元一次不等式.21、(1)證明見解析;(2).【解析】

(1)根據(jù)切線的判定定理得到BC是⊙O的切線,再利用切線長定理證明即可;(2)根據(jù)含30°的直角三角形的性質、正切的定義計算即可.【詳解】(1)∵AB是⊙O直徑,BC⊥AB,∴BC是⊙O的切線,∵CD切⊙O于點D,∴BC=CD;(2)連接BD,∵BC=CD,∠C=60°,∴△BCD是等邊三角形,∴BD=BC=3,∠CBD=60°,∴∠ABD=30°,∵AB是⊙O直徑,∴∠ADB=90°,∴AD=BD?tan∠ABD=.【點睛】本題考查了切線的性質、直角三角形的性質、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.22、(1)直線l與相切,見解析;(2)見解析;(3)AF=.【解析】

連接由題意可證明,于是得到,由等腰三角形三線合一的性質可證明,于是可證明,故此可證明直線l與相切;先由角平分線的定義可知,然后再證明,于是可得到,最后依據(jù)等角對等邊證明即可;先求得BE的長,然后證明∽,由相似三角形的性質可求得AE的長,于是可得到AF的長.【詳解】直線l與相切.理由:如圖1所示:連接OE.平分,.,.,.直線l與相切.平分,.又,.又,..由得.,,∽.,即,解得;..故答案為:(1)直線l與相切,見解析;(2)見解析;(3)AF=.【點睛】本題主要考查的是圓的性質、相似三角形的性質和判定、等腰三角形的性質、三角形外角的性質、切線的判定,證得是解題的關鍵.23、(1)詳見解析;(2)【解析】

(1)連接OA,利用切線的判定證明即可;

(2)分別連結OP、PE、AE,OP交AE于F點,根據(jù)勾股定理解答即可.【詳解】解:(1)如圖,連結OA,

∵OA=OB,OC⊥AB,

∴∠AOC=∠BOC,

又∠BAD=∠BOC,

∴∠BAD=∠AOC

∵∠AOC+∠OAC=90°,

∴∠BAD+∠OAC=90°,

∴OA⊥AD,

即:直線AD是⊙O的切線;

(2)分別連結OP、PE、AE,OP交AE于F點,

∵BE是直徑,

∴∠EAB=90°,

∴OC∥AE,

∵OB=,

∴BE=13

∵AB=5,在直角△ABE中,AE=12,EF=6,F(xiàn)P=OP-OF=-=4

在直角△PEF中,F(xiàn)P=4,EF=6,PE2=16+36=52,

在直角△PEB中,BE=13,PB2=BE2-PE2,

PB==3.【點睛】本題考查了切線的判定,勾股定理,正確的作出輔助線是解題的關鍵.24、(1)證明見解析;(2).();(3).【解析】分析:(1)先判斷出∠ABM=∠DOM,進而判斷出△OAC≌△BAM,即可得出結論;(2)先判斷出BD=DM,進而得出,進而得出AE=,再判斷出,即可得出結論;(3)分三種情況利用勾股定理或判斷出不存在,即可得出結論.詳解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如圖2,過點D作DE∥AB,交OM于點E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)當OA=OC時.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)當AO=AC時,則∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此種情況不存在.(ⅲ)當CO=CA時,則∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此種情況不存在.即:當△OAC為等腰三角形時,x的值為.點睛:本題是圓的綜合題,主要考查了相似三角形的判定和性質,圓的有關性質,勾股定理,等腰三角形的性質,建立y關于x的函數(shù)關系式是解答本題的關鍵.25、(1)(1,4)(2)①點M坐標(﹣,)或(﹣,﹣);②m的值為或【解析】

(1)利用待定系數(shù)法即可解決問題;(2)①根據(jù)tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,構建方程即可解決問題;②因為點M、N關于拋物線的對稱軸對稱,四邊形MPNQ是正方形,推出點P是拋物線的對稱軸與x軸的交點,即OP=1,易證GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解決問題.【詳解】解:(1)把點B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴拋物線的解析式為y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴頂點D坐標(1,4);(2)①作MG⊥x軸于G,連接BM.則∠MGB=90°,設M(m,﹣m2+2m+3),∴MG=|﹣m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論