清華大學(xué)高數(shù)競(jìng)賽培訓(xùn)_第1頁(yè)
清華大學(xué)高數(shù)競(jìng)賽培訓(xùn)_第2頁(yè)
清華大學(xué)高數(shù)競(jìng)賽培訓(xùn)_第3頁(yè)
清華大學(xué)高數(shù)競(jìng)賽培訓(xùn)_第4頁(yè)
清華大學(xué)高數(shù)競(jìng)賽培訓(xùn)_第5頁(yè)
已閱讀5頁(yè),還剩135頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1,2,3,5章及其經(jīng)典習(xí)題第一部分例題精講與習(xí)題第一章極限與連續(xù)性1.1基本概念與內(nèi)容提要1).極限的條件:左極限等于右極限。(1函數(shù)連續(xù)性和可導(dǎo)性的(2第一類間斷點(diǎn)(左右極限:>可去間斷點(diǎn):左右極限且相等但函數(shù)在該點(diǎn)無(wú)b>跳躍間斷點(diǎn)fxfx0(3)im,xxxx0fx0xx0處可導(dǎo)且f'。所以,可導(dǎo)性就是極限0fxfx0是否1,2,3,5章及其經(jīng)典習(xí)題第一部分例題精講與習(xí)題第一章極限與連續(xù)性1.1基本概念與內(nèi)容提要1).極限的條件:左極限等于右極限。(1函數(shù)連續(xù)性和可導(dǎo)性的(2第一類間斷點(diǎn)(左右極限:>可去間斷點(diǎn):左右極限且相等但函數(shù)在該點(diǎn)無(wú)b>跳躍間斷點(diǎn)fxfx0(3)im,xxxx0fx0xx0處可導(dǎo)且f'。所以,可導(dǎo)性就是極限0fxfx0是否;(4)求函數(shù)的漸近線:①水平漸近線:limfxA,則limxxxxx0fxxx0yfxxx0fxxykxb其中klim,blimf xkx;xx有兩條。2).連續(xù)函數(shù)的極限a0,lim limnnnnx2limarccote4).極限的四則運(yùn)算2xx0ex05)恒等變形、約去零因子、有理化等常用化簡(jiǎn)方法6).極限準(zhǔn)則(定理、單調(diào)有界定理)sinx1x elimxxx0x08).洛法則(重點(diǎn),常與洛法則一起交替使用,??嫉墓灿衅叻N不定式極限:大學(xué)數(shù)學(xué)競(jìng)賽培訓(xùn)0①型,常用方法:約去零因子;等價(jià)無(wú)窮小替換;變量代換;洛0② 型,常用方法:分母同時(shí)除以最高次冪項(xiàng);變量替換;洛法則型,常用方法:通分;倒代換;有理化0型,常用方法:變形;變量代換;取倒數(shù)化為型00型,常用方法:取對(duì)數(shù)化為0型;恒等變形;變量代換⑥0型,常用方法:取對(duì)數(shù)化為0型;恒等變形消除不定式;利用重要極1im1xxe;等價(jià)替換x01⑦型,常用方法:取對(duì)數(shù)化為0型;利用重要極限im10①型,常用方法:約去零因子;等價(jià)無(wú)窮小替換;變量代換;洛0② 型,常用方法:分母同時(shí)除以最高次冪項(xiàng);變量替換;洛法則型,常用方法:通分;倒代換;有理化0型,常用方法:變形;變量代換;取倒數(shù)化為型00型,常用方法:取對(duì)數(shù)化為0型;恒等變形;變量代換⑥0型,常用方法:取對(duì)數(shù)化為0型;恒等變形消除不定式;利用重要極1im1xxe;等價(jià)替換x01⑦型,常用方法:取對(duì)數(shù)化為0型;利用重要極限im1ex09).無(wú)窮小得比較x0,則xx即為無(wú)窮小量,0xx0時(shí)x是比x高階的無(wú)窮limxxx(1)limxxx小,記為xoxx0時(shí)x是比x低階的無(wú)窮??;xCC0xx0時(shí)x是與x同(2)limxxxC=1xx0時(shí)x與x是等價(jià)無(wú)窮小,記為xx0;xCC0xx0時(shí)x是與xlimxkxxk階無(wú)窮小。等價(jià)無(wú)窮小替換求極限(注意:有界函數(shù)與無(wú)窮小的積是無(wú)窮小指在乘積型極限中,一個(gè)無(wú)窮小因式可以用與它等價(jià)的無(wú)窮小因式代替。x0時(shí),ex,11xa1ax,ax1xn11 coxarctanxx。注意:高階無(wú)窮小、k階無(wú)窮小補(bǔ)充:無(wú)窮大量比較:①當(dāng)n 時(shí),無(wú)窮大的階lnn,n0,n0,ana1,nn;及應(yīng)用。數(shù)由低到高排列為:x 時(shí),無(wú)窮大的階x。②當(dāng)數(shù)由低到高排列為:ln9).利用公式、中值定理求極限,求極限常用公式有:xnn!oxne...2!2n1ox2nsinx2n1!5!2nox2n1x12n!x5ox52!4!1x3215tan3nox9).利用公式、中值定理求極限,求極限常用公式有:xnn!oxne...2!2n1ox2nsinx2n1!5!2nox2n1x12n!x5ox52!4!1x3215tan3noxnln11nxnoxn的定義求極限11x10).利用定11) 證明數(shù)列極限的方法:①定理②單調(diào)有界定理③級(jí)數(shù)斂散法:若級(jí)數(shù)④級(jí)數(shù)收斂的必要條件:若級(jí)數(shù)an收斂,則n1aa liman n1nnn1an0。n補(bǔ)充:給定數(shù)列an,則liman的充要條件是級(jí)數(shù)anan1收斂。nn1級(jí)數(shù)的斂散性。所以,數(shù)列的斂散性可以轉(zhuǎn)化為0,nmbaxnaxn1.a 0公式:lim0 1 n0,nm,數(shù)列極限也可用。12)bxmbxm1...bx,nm01n13)中值定理求極限:關(guān)鍵是將欲求的極限寫(xiě)成中值定理的形式,在求函數(shù)式具有規(guī)律比或其分母之項(xiàng)具有中值定理那樣的關(guān)聯(lián)或函數(shù)式非常復(fù)雜難以化簡(jiǎn)時(shí),尤其是像求類未定的極限如imsin x1sin x,可以考慮使用中值定理。xfnlimfnlimfx0。14)nxn1級(jí)數(shù)的斂散性等。求極限可以轉(zhuǎn)化為求定、1.2etnxesinxlim。xsinxx0etnxsinx在sinxesinx中值定理得etnx與tnxx0時(shí),e1etnxsinxetnxesinxsc2xsxlimlimxxx0imsc2方法二:先處理一下,在使用等價(jià)無(wú)窮小和洛法則1esinxetanxesinxxsinxlimetnxesinxlim。xsinxx0etnxsinx在sinxesinx中值定理得etnx與tnxx0時(shí),e1etnxsinxetnxesinxsc2xsxlimlimxxx0imsc2方法二:先處理一下,在使用等價(jià)無(wú)窮小和洛法則1esinxetanxesinxxsinxlimlim3limx1xn2.求lim。2 1xn0n21n111xnxn解:0, 使得dxlim0dx2 2 ,n211x1x2n001exycosxydxdy=2 23.D:x2y2r2lim.rr0r2Dr,Dexycosxydxdyr2ecos,2 2 2 2使得rDr當(dāng)r0時(shí),00,1exycosxydxdylimecos2 2 2 2r0r200Drlim(cos2cos22nn1)cos24.nnncosn .n12n12222 cosxdx...cos lim cos0nnnnx1 1cos2 21020 2nk1n1k nClim。nnk1 kk1k2...2 1解:當(dāng)kn1n1k11n2n3...nknn20n1k1kn1nCkn2n12n1nn0 n1k2n2n12n1nk1即0n1k nC0,n22nnnnk1n1k0limnC由nnk1例6.證明:數(shù)列7求其極限。7, 777777,7,...收斂,并7xnfxxnxn12n1nn0 n1k2n2n12n1nk1即0n1k nC0,n22nnnnk1n1k0limnC由nnk1例6.證明:數(shù)列7求其極限。7, 777777,7,...收斂,并7xnfxxnxn2777x,證明:設(shè)該數(shù)列通f(2)=2xn2fxnxn22fxnf2,由中值定理得:x,2之間,使得fxf2fx2,1fx,4 7x77xfxf2f'xx2,由題意得0x7,n2nnnn11f0 7,1nn4 7n7n 477 7 14'n即x2k由0xn2,012fxn2,則k122,k1limk1x 2x2x20,2k22k20limx2n2limx2n12,由 定理得limx2kknnxn22。n1,x1x2,又設(shè)yfx的反函數(shù)7.fx 2ygx的不可導(dǎo)點(diǎn)中橫坐標(biāo)最小者和最大者。求:(1)求,(2)設(shè)n。n1x、、或f x 0的點(diǎn)的、(1g,g(x)的不可導(dǎo)點(diǎn)即f x不x、ffxf2x2x24f00,又f28,lim'limx24,x2x2fxf2x38lim2不、f 、lim1不存x2x2x2x2在,gxx1f00x2f11x31,8f28處均不可導(dǎo),21x、、或f x 0的點(diǎn)的、(1g,g(x)的不可導(dǎo)點(diǎn)即f x不x、ffxf2x2x24f00,又f28,lim'limx24,x2x2fxf2x38lim2不、f 、lim1不存x2x2x2x2在,gxx1f00x2f11x31,8f28處均不可導(dǎo),2n2,xn2(2)由題意得xn1 2xn22,xn222n2n0limnxlim20,22x2x2n00nxn0,limxn2n1n8.lim。21i ni1nni2i2 i2i1i211i,由介值定理得使得2解: ,i n,in2n21n2n21n1111nnn11limnlimlimnlimi1121222i nni 1n 1nnii11n1nin2nndx1101x24nlimn。nnnnC kCnn k1C n Ck2knnn111n12n2n2n1nn kn14limnk kn1例10.求極限lim1 sin 。2nk1nnk k1解:由 公式得sin n2o,n221nk3n1kk k1nn11lim1 sin1limno 22nk1nnnnk1 nn2n5 x1xdx 106f3x3x2x關(guān)于x的階為 。5115 x3 15on14limnk kn1例10.求極限lim1 sin 。2nk1nnk k1解:由 公式得sin n2o,n221nk3n1kk k1nn11lim1 sin1limno 22nk1nnnnk1 nn2n5 x1xdx 106f3x3x2x關(guān)于x的階為 。5115 x3 15ox3x3解:113x15ox55x5 1 5 26是關(guān)于x的 階。fxoo5315 3 151例12.設(shè)函數(shù)f(x)滿足f01,limfxA,且f x、xx0,求證:1A1ln2。1證明:由f x0f(x)單調(diào)遞增,fxf01,、ex11dtxx、exf xf 01lnex1ln2f,01etex1fx1ln2lne 1xexfxexfxexfxnx213.fxlimn1xn的表。2nn2n2x222fxx解:當(dāng);n當(dāng)1x2fx;nn當(dāng)2x1nfx, nnx,n為奇數(shù)nx213.fxlimn1xn的表。2nn2n2x222fxx解:當(dāng);n當(dāng)1x2fx;nn當(dāng)2x1nfx, nnx,n為奇數(shù)fn,即fx不 ;當(dāng)2x1時(shí)該極限不f11,f2limn12n12,n1當(dāng)x1時(shí),若n為偶數(shù)f11,若n為奇數(shù)f1 ,f1不;2x2nf22nf21,f2不;,其定義域?yàn)?1x2,fx2122n13517知xn = 。n12 4 16n22222224...22n122n1,解:1222...2n1分母22 ,22n112。nnnnn221221演練:設(shè)x 1a1a2..1a2n,其中1limx。annn11an1x21 1x2例15.求lim2 。x0sxex2sinx2公式得:ox41x4解:由81x2ox22cose 3x2ox222111lim2 lim 8 8演練:設(shè)x 1a1a2..1a2n,其中1limx。annn11an1x21 1x2例15.求lim2 。x0sxex2sinx2公式得:ox41x4解:由81x2ox22cose 3x2ox222111lim2 lim 8 813122nnlnnlnnlim。nnlnnnnlnn2nnlnnlnn2lnn2lnnnlnn2nlim1explimlimnnlnnnnnlnnn2x2e2explimxxlnx11xn1x11例17.求lim1 2 3nnn111解:設(shè)Sn1 ...,則2 3n11...11...S 111...12n112n122n2n2 33 4111... 211...112n22n2 3 4111... 111...112nn2 3 2 31111111......nnn1 n2nn12n111 nn1 1 1 1 1 1x1limSnlim111... 211...112n22n2 3 4111... 111...112nn2 3 2 31111111......nnn1 n2nn12n111 nn1 1 1 1 1 1x1limSnlim2nnn11121n0 nnnlimSlimS1ln2limSnn2n2n12n2nnn111limSnlim1 ...ln22 3nnnn2011,求的值。limn1nnnn1n解:n111nxn2011,0,0limlimn1x011xnn12011又limx010,12011,2010,120112011xA0,求。19.已知有整數(shù)nn4使極限limxxnx4nlimxx1由極限的 性得n1,n,1tn4tn1xnxlimlimxtt0tn42tnlim7tn52tn1A0,n5, 1 1limt0tn 5t02311 1 13343n3lim..313141 n1333n2k1由極限的 性得n1,n,1tn4tn1xnxlimlimxtt0tn42tnlim7tn52tn1A0,n5, 1 1limt0tn 5t02311 1 13343n3lim..313141 n1333n2k2k1k31k1nn式limlimnk2k 1 nk2k13k k12n2n1223limnnn13k36k211k5k3!nlimnk1n11式limnk1k! k3!1 11115 2! 3! n1! n2! n3! 3n22n2lim。3 21k2n23 2nnk23 2nnk2k2n2,3nn3 2nk32n131n又k nn12n1,26nn12n1xnn12n16n3n2nn12n16n31nn12n16n31n13limn6n3n2n22n2113 lim...3 21n23 2nn3 23nnnn12kn21limnk11112n1式limn...limn2n21n22n1nk0n2k2n22n211112n1 ,n1n1 k0nn2n2kn2k12n22n22n2113 lim...3 21n23 2nn3 23nnnn12kn21limnk11112n1式limn...limn2n21n22n1nk0n2k2n22n211112n1 ,n1n1 k0nn2n2kn2k12n22n22n1limn2,nn1n12nnn2kk01n2kn2klimn!n1!2!...n1!limn!n!nn01!2!...n1!n2n2!n1!2n3nn1n!n!lim2n30,lim1!2!...n1!0nnn1n!nn!nn25.limsinn2n n2n 式limsinn2nnlimsin1nnnnfxx0Rf0。RlimxxFxfxxlimFxlimFN0FN0FN0,RF0f0nbnan27.求limn22 nanb2nnba b2an nn nnnab22limn=lim1n2211a b211annn1bnexplimnexp lim1n1n2xlimFN0FN0FN0,RF0f0nbnan27.求limn22 nanb2nnba b2an nn nnnab22limn=lim1n2211a b211annn1bnexplimnexp lim1n1n22nn1lna1lnbe2ab2處可導(dǎo),f'(1)1,求limxx0limxx0fx)ff2x)ff3tanx)f=limxx03tanxxxxx0x0例29.F(xx0x1F(xFx11x,xF(x。FxFx11x(1)xx1,xxx11x1x1 1x12x1xx1FFF 1x1F(2)xx xxx 11x11111 x2x1FFx代換成,F(xiàn)F(3)1x1x1x1x1x1 x1(1)+(3)-(2)得22x1x3x21(2F(=x1 x21x(x1)x(x1)F(設(shè)0n123,...,a2an 1a a) (1a)(1a)(1axn,)11212n證明:limxnnn22x1x3x21(2F(=x1 x21x(x1)x(x1)F(設(shè)0n123,...,a2an 1a a) (1a)(1a)(1axn,)11212n證明:limxnnnn,...,n111,1a11a211111x 1121a 1a1a)112111211(1a1)(1a2)11(1a)(1a)(1a)n112anx xn1n(1a)(1a)(1a)121annan1an) )(1an)11(1a1)(1a2)(1an)n,xnimn.x031.n為自然數(shù),f(x在[0,n]f(0)f(n,aa1[0n]f(a)f(a1。試證:證明:當(dāng)n=1,當(dāng)n>1,g(x)f(x1f(xg(x在[0,n-1]上連續(xù),mM,m1g(0)g(1)g(n1)Mn由介值定理,a[0n1即有aa1[0n]),使g(a)1g(0)g(1)g(n1)n=1f(1)f(0)f(2)f(1)f(n)f(n1)1f(n)f(0)0nn即有aa1[0n],g(a)f(a1f(a=0,f(a)f(a11例32.如果f(x)是,上的周期函數(shù),且limf ,求f(x)。xx0解:對(duì)xT0fxfx即有aa1[0n],g(a)f(a1f(a=0,f(a)f(a11例32.如果f(x)是,上的周期函數(shù),且limf ,求f(x)。xx0解:對(duì)xT0fxfxnT11由limf 0得:fxlimfxnTlimftlimf 0xxx0nxtx0xlxx時(shí)解:有界,ln7x2limxx22102x252x27解:x時(shí)arctanarctanx21x227x2xx 2217x2limxx 2212x252x27x22limx52x271x21 x 223x435limx2x252x27cosxexcosxex35.求limx03xxexexx 2sinsin式lim 2 2 x3x0xexxxeexex1 2 2 2limx0 lim3x2xx01x14xx lim2x0例.求im x1x2..anxnxa2an ...1 1式 limxx x11a1a2anlimx 1nxxlim1a1t1a2t...1axexxxeexex1 2 2 2limx0 lim3x2xx01x14xx lim2x0例.求im x1x2..anxnxa2an ...1 1式 limxx x11a1a2anlimx 1nxxlim1a1t1a2t...1ant1a1a2anntnt0x37.求limx11x1n11x1)式limx11xn11x11n!21xn1limx1lnxex38.lim4x2x2x1x 1x11ex111411 13 xlim式x2xx14131ttttttt2 3 4231limtt01tt2t3t41tt2t3112lim4 3 tt0fy39.Fxy0,...,Fxn2xnn12limxnxn1,并求此極限值。nx=1得:F1,yfy11y2y5,fy1y22y10y129,22yx29fyxfy39.Fxy0,...,Fxn2xnn12limxnxn1,并求此極限值。nx=1得:F1,yfy11y2y5,fy1y22y10y129,22yx29fyxyx9,Fx,y2,2x..0n11911即3xx2n1 nx2xnnxn單調(diào)遞減且有下界,limxnnA299,對(duì)AA3,2Annlimxn3n12111140.設(shè)a1 2 22 2n21解:設(shè),則a1cos2a2cos cos ,...2222由數(shù)學(xué)歸納法可得ancos n,2n2cos cos ...cos sin2 22 2n 2ncos 2...cos lim2nn2nn22n2nsinsin limsin sin 2 n2nn2nsin2n2nan例41.設(shè)a3,a2a2 1n2,求lim。n11nn2naa...a12 n1解:由a131an2a211及數(shù)學(xué)歸納法得an1na 11a1a12a aa222242a2212an1 n1n1n2 n2nnn2...22n2a22na22 212a2...a222aa...an...a a 12 an1n2 1 1n1n2 112 n1a211得 n a 11a1a12a aa222242a2212an1 n1n1n2 n2nnn2...22n2a22na22 212a2...a222aa...an...a a 12 an1n2 1 1n1n2 112 n1a211得 n 2,又an1,lim0,2n2aa...a12 n110,n2n12n12a2a211 n lim n limlimn2222nnnnn2aa...a2aa...a2aa...a12 n1an12 n112 n12arctanxxfx42.f"01,求,且lim3xx0f0,f0,f"0的值。arctan解:由1lim得:x33x2x0x01f00f01 1 2x 2fxxf"x22由1 1得:3x26xx0x0、 21f00,由1lim得:6x0fx83f"063f"08,f"022limxx0f01,f00,f"0831lim( arctanx)lnx2xlnarctanx x 1lim2 2x21arctanx)lnx lnxarctanxlimee2xx1x21x22 1 1x2x1limlim1limarctanx1xx1x22x1x221( arctanx)lnxe12x44.f(xx6的鄰域內(nèi)為可導(dǎo)函數(shù),tlnarctanx x 1lim2 2x21arctanx)lnx lnxarctanxlimee2xx1x21x22 1 1x2x1limlim1limarctanx1xx1x22x1x221( arctanx)lnxe12x44.f(xx6的鄰域內(nèi)為可導(dǎo)函數(shù),tx 6f(u)dudt且limf(x)0,limf(x)2010,求極限lim6t 。(6x)3x6x6x6t f(u)dudtx66x f(u)du6t limxlim3x6(6x)32x6x66f(u)duxfx6x62fxxf'xlimlim2010x6x6x611tet45.求極限lim.112t0tetarctant111et1tetxexlim t lim11et21t21tt0t0xexextetarctant1exlimlim1x2x41x22xexxex1x2x2xtdtxt20.limx11xx0x2x22xxtdtxttdtxt200limx11x0xexcosx1xexcosx1x23xxx0exsinx2323x6xx0x0x2xe247.求極限limx)]x04o(x4)cosx22x2x2x2x411 ( )2o(xx2x22xxtdtxttdtxt200limx11x0xexcosx1xexcosx1x23xxx0exsinx2323x6xx0x0x2xe247.求極限limx)]x04o(x4)cosx22x2x2x2x411 ( )2o(x4)1 o(x4)e2 2! 22 8由此得到:)2o(2o(x2)x2x44112!o(4!o(x)]x12o(x)44418原式limlim2o(x2)]x22x4o(x4) 24[2x0x0f(00f(00f(00.在曲線例48.f(x具有yf(x上任意一點(diǎn)(x,f(x(x0)x軸上的截距記作xf()f(x),求limx0解:過(guò)點(diǎn)(x,f(xyf(xYf(x)f()f(0)0f(0)0x0f(x)0x軸上的截f(x)f(x)f(x)f(x)x,且limlimxlim0;x0f(xx00處公式得:f(x)f(0)f(0)x11)x)x在0x之間;22f(f(11122x代入得:f()f(0)f(0)11f()2f()2,在0與 之間;22222))limxf()limlim2xxx0x0x012limxf(x)f(x)limf(x)f(0)f(0)1x0f(x)xf(x)2x0f(x)xx1的等價(jià)無(wú)窮小則m____設(shè)當(dāng)11xx1 m mx mxm1 m11xxm11limx12m350.求lim1111n))limxf()limlim2xxx0x0x012limxf(x)f(x)limf(x)f(0)f(0)1x0f(x)xf(x)2x0f(x)xx1的等價(jià)無(wú)窮小則m____設(shè)當(dāng)11xx1 m mx mxm1 m11xxm11limx12m350.求lim1111nnnn n12n nn113nx1limxn1n n1n 3nn nn2n11n11231111lim n n n n nx1dx 2tdt11 21t22ln201t010xC0,試確定51.已知極限limn和C的值。nxx011x)x22x33ox]2x xo(x),2333][2131x2o31x3o(x3),3又1x22(x1x3 o(24x3ox3o(x3))3原式lim 3 3 lim3 Cxnxnx0x0n3C4.3法2:運(yùn)用洛必達(dá)法則可知:4x22112C原式lim1n1xx0故n3C4.352.fx2sinx...2010sinx,求f(0)fxsinxgxg...2010sinxf'xsinxg'xcosxgx,f'0g02010!法2:運(yùn)用洛必達(dá)法則可知:4x22112C原式lim1n1xx0故n3C4.352.fx2sinx...2010sinx,求f(0)fxsinxgxg...2010sinxf'xsinxg'xcosxgx,f'0g02010!則kennlim53.求。nk1n1kkenknnlimnlim1 edxe1xnk1nknk11k0ken1ene1nnen1limlimlime1nk1n1nn11ennk1n1k1kennlime1nk1n1k1.)1時(shí),有f(x),x2f2(x)π(2)limf(x1 。(1)imf(x)4xx10fx遞增,fx(1f(x)x2f2(x)111xx0f(x)dxx2x2f即fx1arctanx,fx1arctanx441fxlim1arctanx1x44f(x)limf(x)x(2)由fx1 :4limfxlim1arctanx1x44x55.yy(xx3y33axy0(a0)確定,求limy。xxxy且3axyxyx2xyy2x3y33axy,xy,(2)由fx1 :4limfxlim1arctanx1x44x55.yy(xx3y33axy0(a0)確定,求limy。xxxy且3axyxyx2xyy2x3y33axy,xy,xyy2x213ay6aylimy1y2xy2xyy2xx2xln11ln1nln12 n n n56.求極限limn ...n1n1n112nln1kln1k n nnn1ln1xdx2ln21n1nnk1nk10kln1kln1kln1k n n nnnnnlim n1n1nn1k1nnk1nk1kln1kn n 1 ln1xdxln21lim2ln21n10nk1ktan(tanx)sin(sinx)57.求極限limxsinxx0x33!ox3tan解:由tan 3x33ox3tantanxtanxx333x2x3ox33sin 3!x33ox3sinsinxsinxxx1x3ox331tan(tan lim tanx33x3oxtan 3x33ox3tantanxtanxx333x2x3ox33sin 3!x33ox3sinsinxsinxxx1x3ox331tan(tan lim tanx33x3oxx ox33x3! ox3x3lim21x3ox3x021exe2x...enxx58.求極限limnnx01xnexe2xexnnexe2x...enxlimex0xnex2e2x...nenxx0n12limex0eex 2xnxee...en11x(n2)sin59.設(shè)數(shù)列{xnnsin,則n1。n1n1nxlimn1k1knSTOLZ(定理):xx設(shè){y}嚴(yán)格單增,且y+,如果limn n1a(a)yynnnn n1x則lim n1=ayyynnn n1n推論:x,則li xxnnnnnnx)xx xn1limn(n1)nnnnn(2)設(shè)limxnnnlnx由(1)可證lim nlimlnxnnnnlimlnx即limlnnnnnn設(shè)limnnlimnn11x(n2)sinx1;nn1n1nnnnxxim1x,則li xxnnnnnnx)xx xn1limn(n1)nnnnn(2)設(shè)limxnnnlnx由(1)可證lim nlimlnxnnnnlimlnx即limlnnnnnn設(shè)limnnlimnn11x(n2)sinx1;nn1n1nnnnxxim1nnnkkxlimlim1 n1k1 nn1 nknnnnn1)60.x00,分析:證明數(shù)列極限(n123,...).證明limxn,并求之.n1的方法:①定理②單調(diào)有界定理③級(jí)數(shù)斂散法:若級(jí)數(shù)④級(jí)數(shù)收斂的必要條件:若級(jí)數(shù)n收斂,則aa liman n1nnn1n10。給定數(shù)列an,則liman的充要條件是級(jí)數(shù)anan1收斂,所以,nnn1數(shù)列的斂散性可以轉(zhuǎn)化為級(jí)數(shù)的斂散性。下面對(duì)各種解法給出示例。證明:方法一(單調(diào)有界定理).xn0,對(duì)于一切的n恒有21,x22,因此知數(shù)列{x}有界;又n2xnn1n1212)(2)2xn1n2(xnxn1)12(xn)1x 2),...,xn1)1)}x1x0時(shí)數(shù)列n單調(diào)遞減.即數(shù)列n為單調(diào)數(shù)列,從而數(shù)列n必有極限.2(1xn1)2(1A)設(shè)limxnAAlimxnlimA2,2xn12Annn即limxn2.n方法二(級(jí)數(shù)斂散法)由方法一得1xn22(1x)2x22x2x x nx n n1 2x 32xn1 n2xn2xn1n1nn2x2x x11xn1 n1,列n單調(diào)遞減.即數(shù)列n為單調(diào)數(shù)列,從而數(shù)列n必有極限.2(1xn1)2(1A)設(shè)limxnAAlimxnlimA2,2xn12Annn即limxn2.n方法二(級(jí)數(shù)斂散法)由方法一得1xn22(1x)2x22x2x x nx n n1 2x 32xn1 n2xn2xn1n1nn2x2x x11xn1 n1, 1n1 nxn2xn1xn132xn1 5xn由正項(xiàng)級(jí)數(shù)的比值判別法得:級(jí)數(shù)xn1xn絕對(duì)收斂,n1limxn收斂,以下同方法一。n方法三(級(jí)數(shù)收斂的必要條件)2(1xn1)2xn2xn12 2xn2xn322222(1xn1)xn2 2xnxn22222xn1xn由正項(xiàng)級(jí)數(shù)的比值判別法得:級(jí)數(shù)2絕對(duì)收斂xn2n1limxn20即limx2nxn2nnn1例61.設(shè)f CcosxC...cos1 x,求證:122n nnnnn1(1)對(duì)于任意自然數(shù)n,方程f x 在0, 內(nèi)僅有一解;n2210, 滿足f x ,則limx 。n 2nn2n2n(1)fx11osx,fx在2上連續(xù),n nnf01,f0根據(jù)介值定理得x0, 使得fx1。n n 2n 2n2fxnsinnx 得f x在0, '2n2n一。n111,nn nnlimfarccos11lim111111fxnnnne 2n n2n1fxfn n故N0當(dāng)n>N時(shí)f arccos x在0, 上遞減得nnn2又limarccos1lim nn2n2 2nfxnsinnx 得f x在0, '2n2n一。n111,nn nnlimfarccos11lim111111fxnnnne 2n n2n1fxfn n故N0當(dāng)n>N時(shí)f arccos x在0, 上遞減得nnn2又limarccos1lim nn2n2 2n2nnnFxx2n例62.設(shè)函數(shù)f(x)可導(dǎo),且f(0)=0,F x t fx tdt,求limxnn。x001n解:令ux t則F x t fx t dtxnxfudun nn n001xnfudunfxnxn1Fx0limlimlim2nx2n1x0fxnfxnf0'0f11 lim limxnxn2n2n2nx0x011例63.求im nnnn1nn1ilimln 1lnxdx1n!1解:im nnimnni1 neee10nnnnnf(x)在(-L,L)x=0f'00;64.(101)求證:對(duì)于任意給定的0<x<L,使得xxf tt fttxfxfx;00(2)lim。x0xf tdt ftdt,則F(0)=0,F(x)在[0,x]上可微,由x定00得 FxF0F'xx,01中值理即xxf tt fttxfxfx00xxf tdt ftdtfxfx00(2)解:由(1)得2x2f00得上式的:x0f(0)fxfx120'f4xx0fxfx1210limlim'f2x0x0x0lnxex65.limxxf tdt ftdtfxfx00(2)解:由(1)得2x2f00得上式的:x0f(0)fxfx120'f4xx0fxfx1210limlim'f2x0x0x0lnxex65.lim4x2x2x1x1x11ex111411 13 lim 式x2xxx14131tttt1ttt2 3423limtt01tt2t3t41tt2t3112lim4 3 tt0266.f(x)exsinx2的值域。2解:要求f(x)exsinx2的值域,只需求出函數(shù)的最大值與最小值即可.注意到函數(shù)2f(x)exsinx2為偶函數(shù),故只需考慮x0的情況.為計(jì)算方便,令tx2,得到g(t)etsint,t0,顯然,g(t)與f(x)有相同的值域.g(t)etsintetcostet(costsint)求g(t)的駐點(diǎn):k(k0,1,2,,其對(duì)應(yīng)的函數(shù)值為k4(k)4(k)42sin( k)(1)k eg(t)ek424;22顯然,當(dāng)k2m(m0,1,2,g(t2m0g(t0e5222當(dāng)k2m1(m0,1,2,時(shí),g(t2m0g(t1e .452于是得到函數(shù)g(t)的值域,亦即函數(shù)f(x)的值域?yàn)椋? e ,e4).42267.fxCa,bxa,bya,b使得fy1fx,證明:至少xfx0。200證明:假設(shè)xa,b有fx0,則fx0或fx0僅取其一。不妨設(shè)fx0,xa,b,由f(x)在a,b上連續(xù)得f0infx0,由題意得a,b使得f(x)有最小值,證明:假設(shè)xa,b有fx0,則fx0或fx0僅取其一。不妨設(shè)fx0,xa,b,由f(x)在a,b上連續(xù)得f0infx0,由題意得a,b使得f(x)有最小值,記f1ffxfxfx是最小值。20001.3.練習(xí)題nx2x1.求lim1 。2n2nn1 1212...n ...。333nnnnxn。2n2n22b1nlim1nlimn2。ax0。n1cosx6.求limx0。2x1axn7.設(shè)a0,x10,定義xn1 3xnlimx。n34ln(1t)dtn2sinx0x0x0,8.f(x),在x0處連續(xù),則a 2e2x22ex1a,x1 9. limxx2sinx1n2。n21n222...n210.計(jì)算lim= nn2fxfx1ln14,則lim11.已知lim211cosxx3xx0x012.yfx在點(diǎn)(10y軸上的截距為1,nnx22213.若當(dāng)xx1 9. limxx2sinx1n2。n21n222...n210.計(jì)算lim= nn2fxfx1ln14,則lim11.已知lim211cosxx3xx0x012.yfx在點(diǎn)(10y軸上的截距為1,nnx22213.若當(dāng)x0時(shí),F(xiàn)(x) (xt)f(t)dt的導(dǎo)數(shù)與x為等價(jià)無(wú)窮小,求f(0)。0xfxlimsintsintsinx,求limfx14.設(shè)sinxtxx01e3xsinx15.求lim3x01xxaa16.求極限lim1 2 n,ai0,i1,2,...。nx01nfan17.f(x)afa0,試求lim。fan18.求極限im1[ 12 22(n)(n)2]。n2n2n2n3n2,則a 。19.若limn12x)c1ex)x0a,10在區(qū)間(,)上連續(xù),則a .x020.f(1f(x)tanx13,則limf(x) 。21.已知lime 12xx0x0sin sin2 n nsin...22.計(jì)算limnn1n2n1 nn12n2n2n2n...23.求極限lim1n1n1nnn224.第二章微分學(xué)2.1.基本概念與內(nèi)容提要fx0x1.fxx0x2.平面曲線的切線和法線方程3.一元求導(dǎo)法則xxt(1).參數(shù)方程的導(dǎo)數(shù):所確定的函數(shù)的一階、數(shù)分別是:yyty、txtytyt12n2n2n2n...23.求極限lim1n1n1nnn224.第二章微分學(xué)2.1.基本概念與內(nèi)容提要fx0x1.fxx0x2.平面曲線的切線和法線方程3.一元求導(dǎo)法則xxt(1).參數(shù)方程的導(dǎo)數(shù):所確定的函數(shù)的一階、數(shù)分別是:yyty、txtytytxtxt3dyd2y,x xtx2(2).xdyF時(shí)y、別忘了;②公式法:由Fx,y0得 x③利用微分形式不變性,對(duì)方dxFydy程兩邊同時(shí)取微分,然后解出 。dx、1 d2x 1y"dx1dydxdx(3).反函數(shù)求導(dǎo): dy 3,y2y dy ydyx3y"2yy、d3x y、dxdy"y35dyyxvnnCkunkvk。nk0展開(kāi)成冪級(jí)數(shù)(兩種方法、兩種類型)之后直接求導(dǎo)。 n之和再將有理真分式寫(xiě)成部分分式之和最后仿x 的表m寫(xiě)出給定的有理函數(shù)和差與倍角公式把函數(shù)的次數(shù)逐次降低,最后變成sinkxcoskx之和或之差的形式,n再用公式sin kxksinkxn,nn2cos kxkcoskxnn,n2n幾個(gè)常見(jiàn)高階導(dǎo)數(shù)公式:sin kxvnnCkunkvk。nk0展開(kāi)成冪級(jí)數(shù)(兩種方法、兩種類型)之后直接求導(dǎo)。 n之和再將有理真分式寫(xiě)成部分分式之和最后仿x 的表m寫(xiě)出給定的有理函數(shù)和差與倍角公式把函數(shù)的次數(shù)逐次降低,最后變成sinkxcoskx之和或之差的形式,n再用公式sin kxksinkxn,nn2cos kxkcoskxnn,n2n幾個(gè)常見(jiàn)高階導(dǎo)數(shù)公式:sin kxksinkxn,n2、n!n1snxknosn1lnk1!nnx n! nk! kk0knnkn1kn,xnxx4.必須掌握的三種常見(jiàn)變限函數(shù)求導(dǎo)是:hx⑴yf tdt,則yfhxh xf、'gxg x;gx⑵y fxgtdt,則yf x gtdt,xx00y、f x gtdtfxgx;x0y fxtdt,方法是變量代換,令uxt則tudt1du,x0xxfuduy0 ,yx;x2②y fxtdtx,方法也是變量代換,令uxt,則0txudtduy fuduy、fxx05.利用導(dǎo)數(shù)函數(shù)單調(diào)性:導(dǎo)函數(shù)大于0原函數(shù)遞增,導(dǎo)函數(shù)小于0原函數(shù)遞減。6.極值的判別方法(1)fxx=0f(x)(例.f(x)x=0的某鄰域內(nèi)連續(xù),且lim)x01cosxBf00A.不可導(dǎo)C.取得極大值D.取得極小值fxcosx0性得:xU0,0,性得f(0)=0,又由極限的解:由極限的fx0f0,f(0)是極小值。(2)利用導(dǎo)數(shù) 單調(diào)性后得出極值點(diǎn):導(dǎo)函數(shù)在極值點(diǎn)的左右符號(hào)不同f'x0,f"x0若 0fxx=0f(x)(例.f(x)x=0的某鄰域內(nèi)連續(xù),且lim)x01cosxBf00A.不可導(dǎo)C.取得極大值D.取得極小值fxcosx0性得:xU0,0,性得f(0)=0,又由極限的解:由極限的fx0f0,f(0)是極小值。(2)利用導(dǎo)數(shù) 單調(diào)性后得出極值點(diǎn):導(dǎo)函數(shù)在極值點(diǎn)的左右符號(hào)不同f'x0,f"x0若 0則fx為"f x(3)極小值;若0000fx0則fx為極大值007.函數(shù)的最值:閉區(qū)間內(nèi)最值可能出現(xiàn)在極值點(diǎn)、斷點(diǎn)8.函數(shù)圖象的凹凸性與數(shù)改變符號(hào)的點(diǎn))即為拐點(diǎn)。fxxfx0fx0的點(diǎn);極fxfx改變符號(hào)的點(diǎn)。6.多元函數(shù)微分學(xué)及應(yīng)用zdyudz具有形式不變性。xyxyzfx,yz、、偏導(dǎo)數(shù)的幾何意義:f x,y 和f x,y 曲線x 00y 00y0。全微分的近似計(jì)算:zdzfx(xy)xfy(xy)yv多元復(fù)合函數(shù)的求導(dǎo)法:zf[u(tv(t)]dt ut vtzzf[u(x,y),v(x,y)]x ux vx當(dāng)uu(xy),vv(xy)時(shí),duudxudyvdyxyxy隱函數(shù)的求導(dǎo)公式:2dyFF隱函數(shù)F(xy0,xF ydx2dxFdxyyy(xyz0zFx,zFyx y FuGuFvGvF(x,y,u,v)0(F,G)GGJG(x,y,u,v)0(u,v)uvu1(F,G)v 1(F,G)u1(F,G)v 1(F,G), x J J y J (u,y)(u,x),y,x J (x,v)(y,v)7.多元函數(shù)微分學(xué)在幾何上的應(yīng)用:x(t)xx0yy0zz0,F(xiàn)uGuFvGvF(x,y,u,v)0(F,G)GGJG(x,y,u,v)0(u,v)uvu1(F,G)v 1(F,G)u1(F,G)v 1(F,G), x J J y J (u,y)(u,x),y,x J (x,v)(y,v)7.多元函數(shù)微分學(xué)在幾何上的應(yīng)用:x(t)xx0yy0zz0,1).空間曲線y(t在點(diǎn)M(x處的切線方程: ,y,z)0 0 0(t0) (t0) (t)z(t)0曲線在點(diǎn)M處的切向量為T(mén)(t0,(t0,(t0,同時(shí)也是法平面的法向量,在點(diǎn)M處的法平面方程:(t0)(xx0(t0yy0(t0)(zz0)02).空間曲線y=yx,zzx在點(diǎn)x,y,z,z'x0 0 000yy0zz2法平面方程為'xyyz'xzz0y'x z'x0002100F(x,y,z)0過(guò)該曲線的曲面束方程為F(x,yzG(x,yz)0G(x,y,z)0FyFy量TF,F,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論