![基于需求擴(kuò)散和隨機(jī)技術(shù)進(jìn)步的連續(xù)產(chǎn)品引入過程課件_第1頁](http://file4.renrendoc.com/view/2b47627ab4278526cad43b7c1a31627f/2b47627ab4278526cad43b7c1a31627f1.gif)
![基于需求擴(kuò)散和隨機(jī)技術(shù)進(jìn)步的連續(xù)產(chǎn)品引入過程課件_第2頁](http://file4.renrendoc.com/view/2b47627ab4278526cad43b7c1a31627f/2b47627ab4278526cad43b7c1a31627f2.gif)
![基于需求擴(kuò)散和隨機(jī)技術(shù)進(jìn)步的連續(xù)產(chǎn)品引入過程課件_第3頁](http://file4.renrendoc.com/view/2b47627ab4278526cad43b7c1a31627f/2b47627ab4278526cad43b7c1a31627f3.gif)
![基于需求擴(kuò)散和隨機(jī)技術(shù)進(jìn)步的連續(xù)產(chǎn)品引入過程課件_第4頁](http://file4.renrendoc.com/view/2b47627ab4278526cad43b7c1a31627f/2b47627ab4278526cad43b7c1a31627f4.gif)
![基于需求擴(kuò)散和隨機(jī)技術(shù)進(jìn)步的連續(xù)產(chǎn)品引入過程課件_第5頁](http://file4.renrendoc.com/view/2b47627ab4278526cad43b7c1a31627f/2b47627ab4278526cad43b7c1a31627f5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
TimingSuccessiveProductIntroductionswithDemandDiffusionandStochastic
TechnologyImprovement
基于需求擴(kuò)散和隨機(jī)技術(shù)進(jìn)步的連續(xù)產(chǎn)品引入過程
R.MarkKrankelDepartmentofIndustrialandOperationsEngineering,UniversityofMichigan,IzakDuenyas,RomanKapuscinskiRossSchoolofBusiness,UniversityofMichigan,AnnArbor,MichiganPresentbyLiWeiTimingSuccessiveProductIntr1CONTENTSIntroductionLiteratureModelOptimalPolicyComputationalStudyandInsightsExtensionsCONTENTSIntroduction2IntroductionConsideraninnovativefirmthatmanagesthedevelopmentandproductionofasingle,durableproduct.Overtime,thefirm’sresearchanddevelopment(R&D)departmentgeneratesastochasticstreamofnewproducttechnology,features,andenhancementsfordesignintosuccessiveproductgenerations.IntroductionConsideraninnova3IntroductionThefirmcapturesthebenefitsofsuchadvancesbyintroducinganewproductgeneration.Duetofixedproduct-introductioncosts,itmaybeunreasonabletoimmediatelyreleaseanewproductgenerationaftereachtechnologydiscovery.Rather,thefirmmayprefertodelayanintroductionuntilsufficientincrementalnewproducttechnologyhasaccumulatedinR&D.Theobjectiveofthispaperistocharacterizethefirm’soptimalproduct-introductionpolicyIntroductionThefirmcaptures4IntroductionThetotalnumberofproductgenerationsisnotpre-specified;rather,itisdeterminedbythepaceoftechnologyimprovementalongwiththefirm’sdynamicdecisionsonwhentointroduce.Analysisiscenteredupontwokeyinfluencesaffectingtheintroductiontimingdecisions:(1)demanddiffusiondynamics,wherefutureproductdemandisafunctionofpastsales(2)technologyimprovementprocess,specificallytheconceptthatdelayingintroductiontoalaterdatemayleadtothecaptureoffurtherimprovementsinproducttechnology.IntroductionThetotalnumbero5IntroductionPreviousliteratureexaminingincrementaltechnologyintroductionhasfocusedoneither(1)or(2),butnonehaveconsideredbothfactorssimultaneously.Asaresult,thepresentanalysisprovidesnewinsightintothestructureoftheoptimalintroductiontimingpolicyforaninnovativefirm.Usingaproposeddecisionmodelthatincorporatesbothkeyinfluences,weprovetheoptimalityofathresholdpolicy:itisoptimalforthefirmtointroducethenextproductgenerationwhenthetechnologyofthecurrentgenerationisbelowastate-dependentthreshold,inwhichthestateisdefinedbythefirm’scumulativesalesandthetechnologylevelinR&D.IntroductionPreviousliteratur6IntroductionRelativepapersWilsonandNorton(1989)&MahajanandMuller(1996)Thesetwopapersproceedunderademanddiffusionframework,butdonotmodeltheprogressionofproducttechnology.Rather,theyassumethatthenextgenerationproducttobeintroducedisavailableatalltimesstartingfromTime0.Asaresult,theyrespectivelyconcludetheoptimalityof“nowornever”(thenewgenerationproductisintroducedimmediatelyornever)and“noworatmaturity”(thenewgenerationproductisintroducedimmediatelyorwhenthepresentgenerationproducthasreachedsufficientsales)rulesgoverningproductintroductions.IntroductionRelativepapers7LiteratureTwomainresearchareasaredirectlyrelevanttothecurrentwork.Thefirstcentersonmodelsofdemand.Papersinthisareadescribethepatternsofdemandexhibitedbysingleormultipleproductgenerations,specificallyinrelationtonewinnovations.Thesepapersconcentrateonsystemdynamicsand/ormodelfitwithempiricaldata.Thesecondresearchareaexaminesdecisionmodelsfortechnologyadoptiontiming.Asubsetofthisgroupincludespapersthatmodeltheintroductionofnewproductssubjecttodemanddiffusion.LiteratureTwomainresearchar8Literature—modelsofdemandBass(1969)initiatesthestreamthatexaminesdemanddiffusionmodelsbyformulatingamodelforasingle(innovative)product.TheBassmodelspecifiesapotentialadopterpopulationoffixedsizeandidentifiestwotypesofconsumerswithinthatpopulation:innovatorsandimitators.Innovatorsactindependently,whereastherateofadoptionduetoimitatorsdependsonthenumberofthosewhohavealreadyadopted.Theresultingdifferentialequationforsalesrateasafunctionoftimedescribestheempiricallyobserveds-shapedpatternofcumulativesales:exponentialgrowthtoapeakfollowedbyexponentialdecay.Literature—modelsofdemandBa9Literature—modelsofdemandBass,F.M.1969.Anewproductgrowthmodelforconsumerdurables.ManagementSci.15215–227.ProfDr.FrankM.Bass(1926-2006)wasaleadingacademicinthefieldofmarketingresearch,andisconsideredtobeamongthefoundersofMarketingscience.HebecamefamousasthecreatoroftheBassdiffusionmodelthatdescribestheadoptionofnewproductsandtechnologiesbyfirst-timebuyers.HediedonDecember1,2006.Literature—modelsofdemandBa10Literature—modelsofdemandNortonandBass(1987)extendtheoriginalBassmodelbyincorporatingsubstitutioneffectstodescribethegrowthanddeclineofsalesforsuccessivegenerationsofafrequentlypurchasedproduct.JunandPark(1999)examinemultiple-generationdemanddiffusioncharacteristicsbycombiningdiffusiontheorywithelementsofchoicetheory.WilsonandNorton(1989)proposeamultiple-generationdemanddiffusionmodelbasedoninformationflow.KumarandSwaminathan(2003)modifytheBassmodelforthecaseinwhichafirm’scapacityconstraintsmaylimitthefirm’sabilitytomeetalldemand.Usingtheirreviseddemanddiffusionmodel,theydetermineconditionsunderwhichacapacitatedfirm’soptimalproduction/salesplanisa“build-uppolicy,”inwhichthefirmbuildsupaninitialinventorylevelbeforethestartofproductsalesandalldemandismetthereafter.Literature—modelsofdemandNo11Literature—technologyadoptiontimingGjerdeetal.(2002)modelafirm’sdecisionsonthelevelofinnovationtoincorporateintosuccessiveproductgenerations.Thepaperdoesnotconsiderthediffusiondynamicsoftheexistingproductsinthemarket(productsalesratesdonotdependoncumulativesales).Cohenetal.(1996)assumethatproductcanonlybesoldduringafixedwindowoftime.Therefore,delayingtheproductintroductionforfurtherdevelopmentwillleadtoabetterproductandhigherrevenuesbutoverashortertime.Cohenetal.furtherassumethattheproductcurrentlyinthemarketorthenewlyintroducedproductbothhavesalesataconstantrate.Thus,theydonotconsiderthediffusiondynamics.TheyalsodonotconsiderthestochasticnatureoftheR&DProcess.Literature—technologyadoption12Literature—technologyadoptiontimingBalcerandLippman(1984)concludethatafirmwilladoptthecurrentbesttechnologyifitslaginprocesstechnologyexceedsacertainthreshold.Thethresholdiseithernonincreasingornondecreasingintime,dependentonexpectationswithrespecttopotentialfortechnologydiscovery.Farzinetal.(1998)considersasimilarproblemunderadynamicprogrammingframework.Thepaperexplicitlyaddressestheoptionvalueofdelayingadoptionandcomparesresultstothoseusingtraditionalnetpresentvaluemethods,inwhichtechnologyadoptiontakesplaceiftheresultingdiscountednetcashflowsarepositive.Ineachoftheseworks,thetechnologyadoptiondecisiondoesnotexplicitlyconsidertheeffectsofadoptiontimingonproduct-demanddynamics.Literature—technologyadoption13Literature—technologyadoptiontimingWilsonandNorton(1989)considertheone-timeintroductiondecisionforanewproductgeneration.Intheirmodel,productintroductionhasfixedpositiveeffectsonmarketpotentialalongwithnegativeeffectsduetocannibalization.Theyconcludethattheoptimalpolicyforthefirmisgivenbya“nowornever”rule.Thatis,itwilleitherbeoptimaltointroducetheimprovedproductassoonasitisavailableorneveratall.MahajanandMuller(1996)concludethatitwillbeoptimaltoeitherintroducetheimprovedproductassoonasitisavailableorwhenenoughsaleshavebeenaccumulatedforthepreviousproductgeneration.(“noworatmaturity”rule)BothWilsonandNorton(1989)andMahajanandMuller(1996)implicitlyassumethatthenextproductgenerationisavailableandremainsunchangedregardlessofwhenitisintroduced.Incontrast,weassumethatafirmthatdelaysintroductionofthenextproductgenerationexpectstocapturegreatertechnologicaladvancesatalaterdate.Literature—technologyadoption14ModelUnderadiscrete-time,infinite-horizonscenario,considerasinglebaseproductthatprogressesthroughaseriesofproductgenerationsovertime.ThebenefitsofimprovedtechnologyarerealizedonlythroughintroductionofanewproductgenerationthatincorporatesthelatesttechnologyavailableinR&D.Animprovementintheincumbentproducttechnologyleadstoahighersalespotentialforthenewproductgeneration.However,eachnewgenerationrequiresafixedintroductioncost.Thefirmseeksanintroductionpolicythatmaximizesnetprofits.ModelUnderadiscrete-time,in15ModelIneachperiod,thefirmhastheoptiontoeitherintroducethelatesttechnologyorcontinuesellingatthecurrentincumbenttechnologylevel(wait).WemodeltheleveloftechnologyinR&Dusingasingleindex,andassumethatthislevelimprovesstochasticallyduringeachperiod.Ourobjectiveistocharacterizethefirm’soptimalintroductionpolicygiventhisstochasticR&Dprocess.ModelIneachperiod,thefirm16Model—NotationandAssumptionsWebeginwiththefollowingdefinitionsunderadynamic-programmingframework:Model—NotationandAssumptions17Model—NotationandAssumptionsModel—NotationandAssumptions18Model—NotationandAssumptionsWeconsideradurablebaseproductforwhichproducttechnologyisadditiveandintroductionofanewproductgenerationresultsincompleteobsolescenceofthepreviousgeneration;i.e.,onceanewgenerationisintroduced,salesofthepreviousgenerationimmediatelydroptoandremainatzero.Thispropertyisreferredtolaterasthe“completereplacement”condition.Itisassumedthat(1)availableproducttechnologyimprovesineachperiodaccordingtoastochasticprocess,and(2)salesforanygivengenerationfollowademanddiffusionprocess.Model—NotationandAssumptions19Model—NotationandAssumptionsBoththetechnologylevelandthepriceofanewproductareexpectedtoinfluencetheproduct’smarketpotentialandassociateddemanddiffusiondynamics.Tounderstandtheeffectsofprogressingtechnologyindependentofothercompoundingfactors,weassumeaveryspecificbutrealisticpricingstrategythatmaintainsconstantunitprofitmargins.Model—NotationandAssumptions20Model—NotationandAssumptionsAsmentionedabove,salespotentialisassumedtobeanincreasingfunctionofproducttechnologylevel.Moreover,wedonotmodelcapacityconstraintsandassumethatalldemandcanbemetsothatsalesequalsdemand.Model—NotationandAssumptions21ModelFormulationthefollowingassumptionismadeonthesalesratecurves:ModelFormulationthefollowing22ModelFormulation(i)ensuresthat,allelseequal,productsalesrateisnondecreasinginproducttechnology.Part(ii)accommodatesrealisticdurable-goodmarketscenariosinwhichthepotentialmarketsizeisfiniteandcurrentperiodsalesdonotexceedtotalremainingmarketpotential.Condition(iii)limitstherateatwhichsalesdecreaseandinadiscrete-timeframeworkguaranteesthatthesalesratefromoneperiodtothenextdoesnotdecreaseatafasterpacethansalesaccumulatedwithintheperiod.ModelFormulation(i)ensurest23ModelFormulationModelFormulation24ModelFormulationTheoptimumintroductionpolicyiscomputedfromtheoptimalityequation:ModelFormulationTheoptimumi25Model—RelationshiptoDemandDiffusionForthescenarioconsideredinthispaper,thereisanaturallinkbetweenthissalesmodelandthatofatypical(continuous-time)diffusionmodel.ConsidertheBassdiffusionmodelforasingleinnovativeproduct:Model—RelationshiptoDemandD26Model—RelationshiptoDemandDiffusionMahajanandMuller(1996)presentanextensionoftheBassmodelforthecaseofmultipleproductgenerations.Model—RelationshiptoDemandD27Model—RelationshiptoDemandDiffusionModel—RelationshiptoDemandD28Model—RelationshiptoDemandDiffusionwhereaandbarecoefficientsofinnovationandimitation,respectively.Becausecumulativesalesistrackedasastatevariable,thedecisionmodel(1)–(3)clearlycapturestheinteractionbetweenproductgenerationswhensalescurvesareofthedemanddiffusionform(6).Moreover,anexaminationof(6)showsthatthedemanddiffusionformsatisfiesAssumption1subjecttoamildrestrictiononproblemparameters.Model—RelationshiptoDemandD29OptimalPolicyOptimalPolicy30OptimalPolicyOptimalPolicy31OptimalPolicyThefirstresultstatesthatasthetwosystemsprogressovertime,thecumulativesaleslevelofthefirmwithlowerinitialcumulativesaleswillneversurpassthefirmwithhigherinitialcumulativesales.OptimalPolicyThefirstresult32OptimalPolicyOptimalPolicy33OptimalPolicyTheresultstatesthatallelseequal,thediscountedoptimalprofit-to-goforafirmwithlowercumulativesaleswillnotexceedthatofafirmwithhighercumulativesalesbymorethanthenetvalueoftheircumulativesalesdifference.Thatis,futurebenefitscannotmakeupforthecurrentsalesdeficit.OptimalPolicyTheresultstate34OptimalPolicyOptimalPolicy35OptimalPolicyOptimalPolicy36OptimalPolicyOptimalPolicy37OptimalPolicyOptimalPolicy38OptimalPolicyOptimalPolicy39OptimalPolicyOptimalPolicy40OptimalPolicyOptimalPolicy41OptimalPolicyOptimalPolicy42OptimalPolicyOptimalPolicy43ComputationalStudyandInsightsThenumericalstudyfocusesontheinfluencesofasimpletechnologydiscoveryrate,fixedproduct-introductioncosts,andmarketparametersincludingthediffusioncoefficientsandaparameterdescribingthesensitivityofproductmarketpotentialtochangesinproducttechnology.ComputationalStudyandInsigh44ComputationalStudyandInsightsforpurposesofnumericalinvestigationwebeginwithasimplifiedbaselinescenario.Salesratecurvesforthebaselinescenarioaregeneratedwithinadiscrete-timeframeworktoapproximateademanddiffusionprocessaccordingtotheformgivenin(6).
TechnologyimprovementisassumedtofollowasimplifiedstochasticprocessinwhichavailabletechnologyinR&Dincreasesbyoneineachperiodwithprobabilityp.ComputationalStudyandInsigh45ComputationalStudyandInsightsComputationalStudyandInsigh46ComputationalStudyandInsightsComputationalStudyandInsigh47ComputationalStudyandInsightsThebaselineoptimalpolicyiscomputedbysolvingthedynamicprogram(3).Insolving(3)numerically,weuselinearinterpolationtohandlecasesinwhichthecurrentperiodsalesgszisanonintegermultipleoftheindexingunitusedforcumulativesales.ComputationalStudyandInsigh48ComputationalStudyandInsightsComputationalStudyandInsigh49ComputationalStudyandInsightsNumericalapproximationgeneratesthebaselinesetoftechnologyswitchingcurvesillustratedinFigure6.ComputationalStudyandInsigh50ComputationalStudyandInsightsTheswitchingcurvesinFigure6suggestthatoptimalintroductionofthenextproductgenerationmaybetriggeredinoneoftwoways:(1)throughsufficientproductsalesatthecurrenttechnologylevels,(2)throughsignificantadvancesinavailableproducttechnology.(1)impliesthat,evenwithoutfurthergainsinR&D,afirmthatcontinuestosellthecurrentgenerationlongenoughmayeventuallyfinditoptimaltointroducethetechnologyonhandeventhoughintroducingatthesametechnologylevelwasnotprofitableinthepast.(2)impliesthat,regardlessofthecurrentgeneration’spositionalongitssalescurve,itmaybeoptimaltointroduceanewgenerationwithlargeenoughgainsinR&Dtechnology.ComputationalStudyandInsigh51ComputationalStudyandInsightsConsidertheexpectedrateoftechnologydiscoveryasmeasured(forthebaselinescenario)bythetechnologydiscoveryprobabilityp.ComputationalStudyandInsigh52ComputationalStudyandInsightsItisnaturalthatunderfixedintroductioncosts,afirmwithahighertechnologydiscoveryratewillintroducenewproductgenerationswhenthegainintechnologyoverthepreviousgenerationislarger.Hence,foragiventechnologylagbetweentheproductgenerationinthemarketandthatavailableinR&D,anincreaseinthetechnologydiscoveryprobabilityshouldincreasetheattractivenessofthedecisiontowaitversusintroduce.ComputationalStudyandInsigh53ComputationalStudyandInsightsComputationalStudyandInsigh54ComputationalStudyandInsightsItisevidentthatalthoughthetechnologyintroductionthresholdsareincreasinginthediscoveryprobability(asshowninFigure7),theexpectedrate,bothintermsoftimeandsales,atwhichthefirmwillintroducenewgenerationsisalsoincreasing;i.e.,firmswithahigherexpectedtechnologydiscoveryrateareexpectedtointroducenewproductgenerationsmorefrequentlyandwithlargertechnologygainsbetweengenerations.ComputationalStudyandInsigh55ComputationalStudyandInsightsNext,weexaminetheinfluenceofthefirm’scoststructureontheoptimalpolicy.AsillustratedinFigure8,adecreaseinthefixedintroductioncostKdecreasestheoptimalintroductionthresholdatanygivencumulativesaleslevel.ComputationalStudyandInsigh56ComputationalStudyandInsightsLetusturntotheparametersthatdescribetheproductmarket.Themodeledproductsalesdynamicswillbeaffectedbythediffusioncoefficientsaandbin(6)aswellasthemarketpotentialparameterm,thatdeterminestheproductmarketpotentialforaspecifictechnologylevel.ComputationalStudyandInsigh57ComputationalStudyandInsightsMarketPotentialParameterAnincreaseinmtranslatestolargergainsinmarketpotentialperunitgainintechnology.Inturn,thesalesrateatagivenlevelofcumulativesalesismoresensitivetoincreasesinproducttechnologywhenmishigher.ComputationalStudyandInsigh58ComputationalStudyandInsightsDemandDiffusionCoefficientsAproductwithahighercoefficientofinnovationa
wouldexhibitasalesratecurvethatstartswithhigherone-periodsales,peaksearlier,andliescompletelyabovethatofaproductwithlowera.Figure10illustrateshowthecoefficientofinnovationinfluencestheproductsalesratecurves.ComputationalStudyandInsigh59ComputationalStudyandInsightsDemandDiffusionCoefficientsWefindthataproductwithhighercoefficientofinnovationisassociatedwithmore-frequentproductintroductions.ComputationalStudyandInsigh60ComputationalStudyandInsightsDemandDiffusionCoefficientsSimilartotheeffectofa,ahighercoefficientofimitationb
translatestoasalesratecurvethatliescompletelyabovethatforlowerb.ComputationalStudyandInsigh61ComputationalStudyandInsightsDemandDiffusionCoefficientsAswitha,theintroductionthresholdsaredecreasingintheproduct’scoefficientofimitationb.Thus,afirmshouldintroducenewproductgenerationsmorefrequentlygivenabasetechnologythatdiffusesthroughitspotentialadopterpopulationfaster.ComputationalStudyandInsigh62ComputationalStudyandInsightsComputationalStudyandInsigh63ComputationalStudyandInsightsUncertainDemandHere,wedescribetwopossiblescenariosforuncertaindemandalongwiththereviseddecision-modelformulations.ComputationalStudyandInsigh64ComputationalStudyandInsightsComputationalStudyandInsigh65ComputationalStudyandInsightsThedecisionmodel(1)–(3)isreformulatedasfollowstoaccommodatethissingle-perioddemanduncertainty:ComputationalStudyandInsigh66ComputationalStudyandInsightsComputationalStudyandInsigh67ComputationalStudyandInsightsAfirmmayalsowishtocapturetheuncertaintyinoverallmarketacceptanceofanewproductgenerationwhiletakingintoaccountpotentialcorrelationbetweenthemarketsuccessoftwosequentialgenerations.Forthedemanddiffusioncase,theestimationofanewgeneration’smarketpotentialN(z)isakeysourceofsuchuncertainty.ComputationalStudyandInsigh68ComputationalStudyandInsightsThepresentmodelframeworkcancapturethemarketsuccessuncertaintyforanewgenerationusingaMarkovmodulateddemandformulation.Apossibleimplementationispresentedhereforillustration.ComputationalStudyandInsigh69ComputationalStudyandInsightsComputationalStudyandInsigh70ComputationalStudyandInsightsThedecisionmodel(12)–(13)implementsthisMarkovmodulateddemandframeworkforaccommodatinguncertaintyinproductsuccess.ComputationalStudyandInsigh71ExtensionsAlimitationofouranalysisisthatthemodeldoesnotconsidertheeffectsofintroductiontimingonconsumers’purchasestrategiesandresultingdemandpatterns.Significantincreaseinthefirm’spaceofproductintroductionsmaycauseconsumerstopostponepurchasedecisionsinanticipationofforthcomingproductimprovements(e.g.,Dhebar1994,Kornish2001).ExtensionsAlimitationofour72ExtensionsThemodeldoesnothowevercapturethetime-to-marketconcernsthatmayariseinacompetitivemarketsetting.AsdescribedinHendricksandSinghal(1997)thecostofdelay(andhencevalueofearlierintroduction)insuchenvironmentscanbesignificant.Onepossibledirectionforfutureresearchistoconsideragametheoreticmodelwithmultiplefirms.AnalternativeapproachmaybetofollowCohenetal.(1996)andimposeafixedwindowoftimefornewproductintroduction.Suchaconstraintimplicitlycapturestime-to-marketconcerns.ExtensionsThemodeldoesnoth73ExtensionsGeneralizetheframeworktoincorporateupgradepurchasesortopermitsimultaneoussaleofmultipleproductgenerationswithsubstitutioneffects.Allowproductpricetofluctuateovertimeanddifferbetweenproductgenerations.Incorporateadecisionvariablefortheexpectedpaceofproductinnovation(e.g.,asmeasuredbyR&Dinvestment)wouldenableamore-completeanalysisoffirmpolicies.ExtensionsGeneralizetheframe74THANKS!THANKS!75演講完畢,謝謝觀看!演講完畢,謝謝觀看!76TimingSuccessiveProductIntroductionswithDemandDiffusionandStochastic
TechnologyImprovement
基于需求擴(kuò)散和隨機(jī)技術(shù)進(jìn)步的連續(xù)產(chǎn)品引入過程
R.MarkKrankelDepartmentofIndustrialandOperationsEngineering,UniversityofMichigan,IzakDuenyas,RomanKapuscinskiRossSchoolofBusiness,UniversityofMichigan,AnnArbor,MichiganPresentbyLiWeiTimingSuccessiveProductIntr77CONTENTSIntroductionLiteratureModelOptimalPolicyComputationalStudyandInsightsExtensionsCONTENTSIntroduction78IntroductionConsideraninnovativefirmthatmanagesthedevelopmentandproductionofasingle,durableproduct.Overtime,thefirm’sresearchanddevelopment(R&D)departmentgeneratesastochasticstreamofnewproducttechnology,features,andenhancementsfordesignintosuccessiveproductgenerations.IntroductionConsideraninnova79IntroductionThefirmcapturesthebenefitsofsuchadvancesbyintroducinganewproductgeneration.Duetofixedproduct-introductioncosts,itmaybeunreasonabletoimmediatelyreleaseanewproductgenerationaftereachtechnologydiscovery.Rather,thefirmmayprefertodelayanintroductionuntilsufficientincrementalnewproducttechnologyhasaccumulatedinR&D.Theobjectiveofthispaperistocharacterizethefirm’soptimalproduct-introductionpolicyIntroductionThefirmcaptures80IntroductionThetotalnumberofproductgenerationsisnotpre-specified;rather,itisdeterminedbythepaceoftechnologyimprovementalongwiththefirm’sdynamicdecisionsonwhentointroduce.Analysisiscenteredupontwokeyinfluencesaffectingtheintroductiontimingdecisions:(1)demanddiffusiondynamics,wherefutureproductdemandisafunctionofpastsales(2)technologyimprovementprocess,specificallytheconceptthatdelayingintroductiontoalaterdatemayleadtothecaptureoffurtherimprovementsinproducttechnology.IntroductionThetotalnumbero81IntroductionPreviousliteratureexaminingincrementaltechnologyintroductionhasfocusedoneither(1)or(2),butnonehaveconsideredbothfactorssimultaneously.Asaresult,thepresentanalysisprovidesnewinsightintothestructureoftheoptimalintroductiontimingpolicyforaninnovativefirm.Usingaproposeddecisionmodelthatincorporatesbothkeyinfluences,weprovetheoptimalityofathresholdpolicy:itisoptimalforthefirmtointroducethenextproductgenerationwhenthetechnologyofthecurrentgenerationisbelowastate-dependentthreshold,inwhichthestateisdefinedbythefirm’scumulativesalesandthetechnologylevelinR&D.IntroductionPreviousliteratur82IntroductionRelativepapersWilsonandNorton(1989)&MahajanandMuller(1996)Thesetwopapersproceedunderademanddiffusionframework,butdonotmodeltheprogressionofproducttechnology.Rather,theyassumethatthenextgenerationproducttobeintroducedisavailableatalltimesstartingfromTime0.Asaresult,theyrespectivelyconcludetheoptimalityof“nowornever”(thenewgenerationproductisintroducedimmediatelyornever)and“noworatmaturity”(thenewgenerationproductisintroducedimmediatelyorwhenthepresentgenerationproducthasreachedsufficientsales)rulesgoverningproductintroductions.IntroductionRelativepapers83LiteratureTwomainresearchareasaredirectlyrelevanttothecurrentwork.Thefirstcentersonmodelsofdemand.Papersinthisareadescribethepatternsofdemandexhibitedbysingleormultipleproductgenerations,specificallyinrelationtonewinnovations.Thesepapersconcentrateonsystemdynamicsand/ormodelfitwithempiricaldata.Thesecondresearchareaexaminesdecisionmodelsfortechnologyadoptiontiming.Asubsetofthi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度網(wǎng)絡(luò)安全保密協(xié)議示范文本-@-1
- 2024-2025學(xué)年北京十四中高一上學(xué)期期中考試化學(xué)試卷
- 網(wǎng)絡(luò)媒體行業(yè)市場(chǎng)競(jìng)爭(zhēng)格局及投資前景展望報(bào)告
- 2024-2025學(xué)年安徽省蚌埠市鎮(zhèn)縣第二中學(xué)高一上學(xué)期12月月考化學(xué)試卷
- 2025年P(guān)ET鐳射素面膜行業(yè)深度研究分析報(bào)告-20241226-181017
- 2025年意大利層皮行業(yè)深度研究分析報(bào)告
- 乘法、除法(二)3、6、9的乘法之間的關(guān)系(教學(xué)設(shè)計(jì))-2024-2025學(xué)年滬教版二年級(jí)數(shù)學(xué)上冊(cè)
- 轉(zhuǎn)讓新疆餐廳合同范本
- 2025年度房地產(chǎn)項(xiàng)目招投標(biāo)代理合同-@-5
- 2025年雙速自控調(diào)漿桶項(xiàng)目投資可行性研究分析報(bào)告
- 學(xué)校安全隱患報(bào)告和舉報(bào)獎(jiǎng)懲制度
- 福建師范大學(xué)《廣告作品賞析》2022-2023學(xué)年第一學(xué)期期末試卷
- 消渴病中醫(yī)護(hù)理
- 醫(yī)院醫(yī)療項(xiàng)目收費(fèi)管理制度
- 建筑師負(fù)責(zé)制工程建設(shè)項(xiàng)目建筑師標(biāo)準(zhǔn)服務(wù)內(nèi)容與流程
- 湖北省石首楚源“源網(wǎng)荷儲(chǔ)”一體化項(xiàng)目可研報(bào)告
- 浙江建設(shè)職業(yè)技術(shù)學(xué)院?jiǎn)握小堵殬I(yè)技能測(cè)試》參考試題庫(含答案)
- 醫(yī)學(xué)教材 《中國(guó)變應(yīng)性鼻炎診斷和治療指南》解讀課件
- 排球教學(xué)課件教學(xué)課件
- 安徽省滁州市2024年小升初英語試卷(含答案)
- 初中體育與健康 初一上期 水平四(七年級(jí))田徑大單元教學(xué)設(shè)計(jì)+蹲踞式跳遠(yuǎn)教案
評(píng)論
0/150
提交評(píng)論