版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.已知函數(shù),,則()A.的最大值為 B.在區(qū)間上只有個零點C.的最小正周期為 D.為圖象的一條對稱軸2.已知“”是“”的充分不必要條件,則k的取值范圍為()A. B.C. D.3.如圖所示,一個水平放置的平面圖形的直觀圖是一個底角為45°,腰和上底長均為1的等腰梯形,則該平面圖形的面積等于()A. B.C. D.4.已知函數(shù)是定義域為奇函數(shù),當(dāng)時,,則不等式的解集為A. B.C. D.5.已知函數(shù)(ω>0),對任意x∈R,都有≤,并且在區(qū)間上不單調(diào),則ω的最小值是()A.6 B.7C.8 D.96.已知函數(shù)的定義域與值域均為,則()A. B.C. D.17.如果直線和函數(shù)的圖象恒過同一個定點,且該定點始終落在圓的內(nèi)部或圓上,那么的取值范圍是()A. B.C. D.8.下列命題中正確的是()A.第一象限角小于第二象限角 B.銳角一定是第一象限角C.第二象限角是鈍角 D.平角大于第二象限角9.函數(shù)在區(qū)間上的圖象可能是()A. B.C. D.10.函數(shù)定義域為()A. B.C. D.11.若都是銳角,且,,則A. B.C.或 D.或12.函數(shù)的圖像的大致形狀是()A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.設(shè)函數(shù),若關(guān)于x的方程有四個不同的解,,,,,且,則m的取值范圍是_____,的取值范圍是__________14.若不等式對一切恒成立,則a的取值范圍是______________.15.函數(shù)的圖象關(guān)于原點對稱,則__________16.大西洋鮭魚每年都要逆流而上游回產(chǎn)地產(chǎn)卵,研究鮭魚的科學(xué)家發(fā)現(xiàn)鮭魚的游速v(單位:)可以表示為,其中L表示鮭魚的耗氧量的單位數(shù),當(dāng)一條鮭魚以的速度游動時,它的耗氧量的單位數(shù)為___________.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.計算(1)-(2)18.已知,且滿足,求:的值19.設(shè)兩個向量,,滿足,.(1)若,求、的夾角;(2)若、夾角為,向量與夾角為鈍角,求實數(shù)的取值范圍.20.已知,.(1)求;(2)若角的終邊上有一點,求.21.如圖,直三棱柱ABC﹣A1B1C1中,M,N分別為棱AC和A1B1的中點,且AB=BC(1)求證:平面BMN⊥平面ACC1A1;(2)求證:MN∥平面BCC1B122.已知,(1)求的值;(2)求的值.
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、D【解析】首先利用二倍角公式及輔助角公式將函數(shù)化簡,再結(jié)合正弦函數(shù)的性質(zhì)計算可得;【詳解】解:函數(shù),可得的最大值為2,最小正周期為,故A、C錯誤;由可得,即,可知在區(qū)間上的零點為,故B錯誤;由,可知為圖象的一條對稱軸,故D正確故選:D2、C【解析】根據(jù)“”是“”的充分不必要條件,可知是解集的真子集,然后根據(jù)真子集關(guān)系求解出的取值范圍.【詳解】因為,所以或,所以解集為,又因為“”是“”的充分不必要條件,所以是的真子集,所以,故選:C.【點睛】結(jié)論點睛:一般可根據(jù)如下規(guī)則判斷充分、必要條件:(1)若是的必要不充分條件,則對應(yīng)集合是對應(yīng)集合的真子集;(2)若是的充分不必要條件,則對應(yīng)集合是對應(yīng)集合的真子集;(3)若是的充分必要條件,則對應(yīng)集合與對應(yīng)集合相等;(4)若是的既不充分也不必要條件,則對應(yīng)集合與對應(yīng)集合互不包含.3、D【解析】根據(jù)斜二測畫法的規(guī)則,得出該平面圖象的特征,結(jié)合面積公式,即可求解.【詳解】由題意,根據(jù)斜二測畫法規(guī)則,可得該平面圖形是上底長為,下底長為,高為的直角梯形,所以計算得面積為.故選:D.4、A【解析】根據(jù)題意,由函數(shù)的解析式分析可得在為增函數(shù)且,結(jié)合函數(shù)的奇偶性分析可得在上為增函數(shù),又由,則有,解可得的取值范圍,即可得答案.【詳解】根據(jù)題意,當(dāng)時,,則在為增函數(shù)且,又由是定義在上的奇函數(shù),則在上也為增函數(shù),則在上為增函數(shù),由,則有,解得:,即不等式的解集為;故選:A【點睛】本題考查函數(shù)奇偶性與單調(diào)性結(jié)合,解抽象函數(shù)不等式,有一定難度.5、B【解析】根據(jù),得為函數(shù)的最大值,建立方程求出的值,利用函數(shù)的單調(diào)性進(jìn)行判斷即可【詳解】解:對任意,都有,為函數(shù)的最大值,則,,得,,在區(qū)間,上不單調(diào),,即,即,得,則當(dāng)時,最小.故選:B.6、A【解析】根據(jù)函數(shù)的定義域可得,,,再根據(jù)函數(shù)的值域即可得出答案.【詳解】解:∵的解集為,∴方程的解為或4,則,,,∴,又因函數(shù)的值域為,∴,∴.故選:A.7、C【解析】由已知可得.再由由點在圓內(nèi)部或圓上可得.由此可解得點在以和為端點的線段上運動.由表示以和為端點的線段上的點與坐標(biāo)原點連線的斜率可得選項【詳解】函數(shù)恒過定點.將點代入直線可得,即由點在圓內(nèi)部或圓上可得,即.或.所以點在以和為端點的線段上運動表示以和為端點的線段上的點與坐標(biāo)原點連線的斜率.所以,.所以故選:C【點睛】關(guān)鍵點點睛:解決本題類型的問題,關(guān)鍵在于由已知條件得出所滿足的可行域,以及明確所表示的幾何意義.8、B【解析】根據(jù)象限角的定義及銳角、鈍角及平角的大小逐一分析判斷即可得解.【詳解】解:為第一象限角,為第二象限角,故A錯誤;因為銳角,所以銳角一定是第一象限角,故B正確;因為鈍角,平角,為第二象限角,故CD錯誤.故選:B.9、C【解析】首先判斷函數(shù)的奇偶性,再根據(jù)特殊值判斷即可;【詳解】解:∵,∴是偶函數(shù),函數(shù)圖象關(guān)于軸對稱,排除A,B選項;∵,∴在上不單調(diào),排除D選項故選:C10、C【解析】由二次根式的被開方數(shù)非負(fù)和對數(shù)的真數(shù)大于零求解即可【詳解】由題意得,解得,所以函數(shù)的定義域為,故選:C11、A【解析】先計算出,再利用余弦的和與差公式,即可.【詳解】因為都是銳角,且,所以又,所以,所以,,故選A.【點睛】本道題考查了同名三角函數(shù)關(guān)系和余弦的和與差公式,難度較大12、D【解析】化簡函數(shù)解析式,利用指數(shù)函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性,即可得出答案.【詳解】根據(jù),是減函數(shù),是增函數(shù).在上單調(diào)遞減,在上單調(diào)遞增故選:D.【點睛】本題主要考查了根據(jù)函數(shù)表達(dá)式求函數(shù)圖象,解題關(guān)鍵是掌握指數(shù)函數(shù)圖象的特征,考查了分析能力和計算能力,屬于中檔題.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、①.②.【解析】畫出的圖象,結(jié)合圖象可得的取值范圍及,,再利用函數(shù)的單調(diào)性可求目標(biāo)代數(shù)式的范圍.【詳解】的圖象如下圖所示,當(dāng)時,直線與的圖象有四個不同的交點,即關(guān)于x的方程有四個不同的解,,,.結(jié)合圖象,不難得即又,得即,且,所以,設(shè),易知道在上單調(diào)遞增,所以,即的取值范圍是故答案為:,.思路點睛:知道函數(shù)零點的個數(shù),討論零點滿足的性質(zhì)時,一般可結(jié)合初等函數(shù)的圖象和性質(zhì)來處理,注意圖象的正確的刻畫.14、【解析】先討論時不恒成立,再根據(jù)二次函數(shù)的圖象開口方向、判別式進(jìn)行求解.【詳解】當(dāng)時,則化為(不恒成立,舍),當(dāng)時,要使對一切恒成立,需,即,即a的取值范圍是.故答案為:.15、【解析】根據(jù)余弦型函數(shù)的對稱性可得出結(jié)果.【詳解】函數(shù)的圖象關(guān)于原點對稱,則.故答案為:.16、8100【解析】將代入,化簡即可得答案.【詳解】因為鮭魚的游速v(單位:)可以表示為:,所以,當(dāng)一條鮭魚以的速度游動時,,∴,∴故答案為:8100.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1);(2).【解析】(1)綜合利用指數(shù)對數(shù)運算法則運算;(2)利用對數(shù)的運算法則化簡運算.【詳解】解:(1)原式;(2)原式【點睛】本題考查指數(shù)對數(shù)的運算,屬基礎(chǔ)題,在指數(shù)運算中,往往先將冪化為指數(shù)冪,然后利用指數(shù)冪的運算法則化簡;在對數(shù)的運算中,要注意的運用和對數(shù)有關(guān)公式的運用.18、【解析】根據(jù)二倍角公式,結(jié)合題意,可求得的值,根據(jù)降冪公式,兩角和的正弦公式,化簡整理,根據(jù)齊次式的計算方法,即可得答案.【詳解】因為,整理可得,解得或因為,所以則19、(1);(2)且.【解析】(1)根據(jù)數(shù)量積運算以及結(jié)果,結(jié)合模長,即可求得,再根據(jù)數(shù)量積求得夾角;(2)根據(jù)夾角為鈍角則數(shù)量積為負(fù)數(shù),求得的范圍;再排除向量與不為反向向量對應(yīng)參數(shù)的范圍,則問題得解.【詳解】(1)因,所以,即,又,,所以,所以,又,所以向量、的夾角是.(2)因為向量與的夾角為鈍角,所以,且向量與不反向共線,即,又、夾角為,所以,所以,解得,又向量與不反向共線,所以,解得,所以的取值范圍是且.【點睛】本題考查利用數(shù)量積求向量夾角,以及由夾角范圍求參數(shù)范圍,屬綜合基礎(chǔ)題.20、(1)(2)【解析】(1)由條件求得,將所求式展開計算(2)由條件求得與,再由二倍角與兩角和的正切公式計算小問1詳解】,,則故【小問2詳解】角終邊上一點,則由(1)可得,21、(1)見解析;(2)見解析【解析】(1)由面面垂直的性質(zhì)定理證明平面,再由面面垂直的判定定理得證面面垂直;(2)取BC中點P,連接B1P和MP,可證MN∥PB1,從而可證線面平行【詳解】(1)因為M為棱AC的中點,且AB=BC,所以BM⊥AC,又因為ABC﹣A1B1C1是直三棱柱,所以AA1⊥平面ABC因為BM?平面ABC,所以AA1⊥BM又因為AC,A1A?平面ACC1A1且AC∩A1A=A,所以BM⊥平面ACC1A1因為BM?平面BMN,所以:平面BMN⊥平面ACC1A1(2)取BC的中點P,連接B1P和MP,因為M、P為棱AC、BC的中點,所以MP∥AB,且MPAB,因為ABC﹣A1B1C1是直三棱柱,所以A1B1∥AB,A1B1=AB因為N為棱A1B1的中點,所以B1N∥BA,且B1NBA;所以B1N∥PM,且B1N=PM;所以MNB1P是平行四邊形,所以MN∥PB1又因為M
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國環(huán)己基甲醛行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國CVD基座行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 正確兒童觀的樹立講解
- 防盜門產(chǎn)品購銷合同
- 2025打樁機租賃合同
- 香菇菌棒銷售合同樣本
- 2025技術(shù)服務(wù)委托合同
- 海鹽縣二手房買賣合同
- 鋼琴銷售合同范本
- 魚池轉(zhuǎn)包合同范本
- 2024年05月浙江金華成泰農(nóng)商銀行員工招考筆試歷年參考題庫附帶答案詳解
- 北京市海淀區(qū)2024-2025學(xué)年七年級上學(xué)期期末考試數(shù)學(xué)試題(含答案)
- 帶看協(xié)議書范本(2篇)
- 股權(quán)投資項目建議書
- 2025年北京廣播電視臺招聘(140人)歷年高頻重點提升(共500題)附帶答案詳解
- 2024復(fù)工復(fù)產(chǎn)安全培訓(xùn)
- 中學(xué)生宿舍日常與管理
- 【歷史】秦漢時期:統(tǒng)一多民族國家的建立和鞏固復(fù)習(xí)課件-2024-2025學(xué)年統(tǒng)編版七年級歷史上冊
- 社區(qū)中心及衛(wèi)生院65歲及以上老年人健康體檢分析報告模板
- 四年級數(shù)學(xué)脫式計算練習(xí)題100道
- 如何提高和加強人力資源隊伍的建設(shè)
評論
0/150
提交評論