版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
學習目標1.會把一元二次方程降次轉(zhuǎn)化為兩個一元一次方程.(難點)2.運用開平方法解形如x2=p或(x+n)2=p(p≥0)的方程.(重點)導入新課復習引入平方根1.如果
x2=a,則x叫做a的
.2.如果
x2=a(a≥0),則x=
.3.如果
x2=64,則x=
.±84.任何數(shù)都可以作為被開方數(shù)嗎?負數(shù)不可以作為被開方數(shù).講授新課直接開平方法的概念一
問題1
一桶油漆可刷的面積為1500dm2,李林用這桶油漆恰好刷完10個同樣的正方體形狀的盒子的全部外表面,你能算出盒子的棱長嗎?
解:設正方體的棱長為xdm,則一個正方體的表面積為6x2dm2,根據(jù)一桶油漆可刷的面積,列出方程10×6x2=1500,由此可得x2=25根據(jù)平方根的意義,得即x1=5,x2=-5.可以驗證,5和-5是方程①的兩根,但是棱長不能是負值,所以正方體的棱長為5dm.①x=±5,試一試
解下列方程,并說明你所用的方法,與同伴交流.(1)x2=4(2)x2=0(3)x2+1=0解:根據(jù)平方根的意義,得x1=2,x2=-2.解:根據(jù)平方根的意義,得x1=x2=0.解:根據(jù)平方根的意義,得
x2=-1,因為負數(shù)沒有平方根,所以原方程無解.(2)當p=0
時,方程(I)有兩個相等的實數(shù)根=0;(3)當p<0
時,因為任何實數(shù)x,都有x2≥0
,所以方程(I)無實數(shù)根.探究歸納
如果我們把x2=4,
x2=0,
x2+1=0變形為x2=p
呢?一般的,對于方程x2=p,(I)
(1)當p>0
時,根據(jù)平方根的意義,方程(I)有兩個不等的實數(shù)根,;利用平方根的定義直接開平方求一元二次方程的根的方法叫直接開平方法.歸納
例1
利用直接開平方法解下列方程:(1)x2=25;(2)
x2-900=0.解:(1)x2=25,直接開平方,得x=±5,∴x1=5,x2=-5.(2)移項,得x2=900.直接開平方,得x=±30,∴x1=30,x2=-30.典例精析練一練完成課本P6練習(1)、(2)、(6)在解方程(I)時,由方程x2=25得x=±5.由此想到:(x+3)2=5,②得用直接開平方法解方程二對照上面解方程(I)的方法,你認為怎樣解方程(x+3)2=5探究交流于是,方程(x+3)2=5的兩個根為上面的解法中,由方程②得到③,實質(zhì)上是把一個一元二次方程“降次”,轉(zhuǎn)化為兩個一元一次方程,這樣就把方程②轉(zhuǎn)化為我們會解的方程了.解題歸納例2
解下列方程:⑴(x+1)2=2;
典例精析
解析:第1小題中只要將(x+1)看成是一個整體,就可以運用直接開平方法求解.即x1=-1+,x2=-1-解:(1)∵x+1是2的平方根,∴x+1=解析:第2小題先將-4移到方程的右邊,再同第1小題一樣地解.例2
解下列方程:(2)(x-1)2-4=0;即x1=3,x2=-1.解:(2)移項,得(x-1)2=4.∵x-1是4的平方根,∴x-1=±2.∴x1=
,
x2=例2
解下列方程:(3)12(3-2x)2-3=0.解析:第3小題先將-3移到方程的右邊,再兩邊都除以12,再同第1小題一樣地去解,然后兩邊都除以-2即可.解:(3)移項,得12(3-2x)2=3,兩邊都除以12,得(3-2x)2=0.25.∵3-2x是0.25的平方根,∴3-2x=±0.5.即3-2x=0.5,3-2x=-0.5
首先將一元二次方程化為左邊是含有未知數(shù)的一個完全平方式,右邊是非負數(shù)的形式,然后用平方根的概念求解.1.能用直接開平方法解的一元二次方程有什么特點?
如果一個一元二次方程具有x2=p或(x+n)2=p(p≥0)的形式,那么就可以用直接開平方法求解.2.用直接開平方法解一元二次方程的一般步驟是什么?3.任意一個一元二次方程都能用直接開平方法求解嗎?請舉例說明.探討交流當堂練習
(C)
4(x-1)2=9,解方程,得4(x-1)=±3,
x1=;
x2=(D)
(2x+3)2=25,解方程,得2x+3=±5,x1=1;x2=-4
1、下列解方程的過程中,正確的是()(A)
x2=-2,解方程,得x=±(B)
(x-2)2=4,解方程,得x-2=2,x=4
D(1)方程x2=0.25的根是
.(2)方程2x2=18的根是
.(3)方程(2x-1)2=9的根是
.3.解下列方程:
(1)x2-81=0;(2)2x2=50;
(3)(x+1)2=4.
x1=0.5,x2=-0.5x1=3,x2=-3x1=2,x2=-12.填空:解:x1=9,x2=-9;解:x1=5,x2=-5;解:x1=1,x2=-3.
4.(請你當小老師)下面是李昆同學解答的一道一元二次方程的具體過程,你認為他解的對嗎?如果有錯,指出具體位置并幫他改正.①②③④解:解:不對,從開始錯,應改為能力拓展:
方程x2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人個人間電子設備維修合同范本3篇
- 2025至2030年中國常壓精密過濾器數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國聲學門數(shù)據(jù)監(jiān)測研究報告
- 2025版協(xié)議離婚與訴訟離婚成本效益分析合同3篇
- 二零二五年度臨時演員演出合同范本及培訓協(xié)議4篇
- 二零二五年度茶樓茶葉批發(fā)市場合作協(xié)議范本3篇
- 專屬員工接送車租賃合同(2024年度)一
- 三方物流合作合同:2024年標準格式版B版
- 2025年度苗木種植項目生態(tài)補償與環(huán)保責任合同4篇
- 二零二四年度長途自駕游汽車租賃服務協(xié)議范本3篇
- 2024年國家焊工職業(yè)技能理論考試題庫(含答案)
- 特魯索綜合征
- 《向心力》 教學課件
- 結(jié)構力學數(shù)值方法:邊界元法(BEM):邊界元法的基本原理與步驟
- 2024年山東省泰安市高考語文一模試卷
- 北師大版物理九年級全一冊課件
- 2024年第三師圖木舒克市市場監(jiān)督管理局招錄2人《行政職業(yè)能力測驗》高頻考點、難點(含詳細答案)
- RFJ 006-2021 RFP型人防過濾吸收器制造與驗收規(guī)范(暫行)
- 盆腔炎教學查房課件
- 110kv各類型變壓器的計算單
- 新概念英語課件NCE3-lesson15(共34張)
評論
0/150
提交評論