版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
13/142022-2023學年高一上數(shù)學期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.已知角的終邊過點,則()A. B.C. D.2.表示不超過實數(shù)的最大整數(shù),是方程的根,則()A. B.C. D.3.函數(shù)的圖象如圖所示,則函數(shù)y的表達式是()A. B.C. D.4.已知直線:與直線:,則()A.,平行 B.,垂直C.,關(guān)于軸對稱 D.,關(guān)于軸對稱5.若都是銳角,且,,則的值是A. B.C. D.6.如圖,在中,已知為上一點,且滿足,則實數(shù)的值為A. B.C. D.7.化簡()A. B.C. D.8.如圖,①②③④中不屬于函數(shù),,的一個是()A.① B.②C.③ D.④9.下列幾何體中是棱柱的有()A.1個 B.2個C.3個 D.4個10.如圖,在直三棱柱ABC-A1B1C1中,AC=CC1,點D,O分別是AB,BC1的中點,則下列結(jié)論錯誤的是()A.與平面ABC所成的角為 B.平面C.與所成角為 D.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.已知扇形的圓心角為,扇形的面積為,則該扇形的弧長為____________.12.已知函數(shù)定義域是________(結(jié)果用集合表示)13.已知,,,則的最小值___________.14.計算_________.15.冪函數(shù)的圖象經(jīng)過點,則________三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-<φ<)的部分圖象如圖所示:(1)求函數(shù)解析式;(2)求函數(shù)的單調(diào)遞增區(qū)間.17.已知向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π](1)若與共線,求x的值;(2)若⊥,求x的值;(3)記f(x)=?,當f(x)取得最小值時,求x的值18.已知定義域為的函數(shù)是奇函數(shù).(1)求的值;(2)判斷并證明函數(shù)的單調(diào)性;(3)若對任意的不等式恒成立,求實數(shù)的取值范圍.19.已知圓經(jīng)過,兩點,且圓心在直線上()求圓的方程()過的直線與圓相交于,且,求直線的方程20.已知扇形的圓心角是,半徑為,弧長為.(1)若,,求扇形的弧長;(2)若扇形的周長為,當扇形的圓心角為多少弧度時,這個扇形的面積最大,并求出此時扇形面積的最大值.21.已知集合,集合(1)當時,求和(2)若,求實數(shù)m的取值范圍
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、A【解析】根據(jù)三角函數(shù)的定義計算可得;【詳解】解:因為角終邊過點,所以;故選:A2、B【解析】先求出函數(shù)的零點的范圍,進而判斷的范圍,即可求出.【詳解】由題意可知是的零點,易知函數(shù)是(0,)上的單調(diào)遞增函數(shù),而,,即所以,結(jié)合性質(zhì),可知.故選B.【點睛】本題考查了函數(shù)的零點問題,屬于基礎(chǔ)題3、A【解析】由函數(shù)的最大、最小值,算出和,根據(jù)函數(shù)圖像算出周期,利用周期公式算出.再由當時函數(shù)有最大值,建立關(guān)于的等式解出,即可得到函數(shù)的表達式.【詳解】函數(shù)的最大值為,最小值為,,,又函數(shù)的周期,,得.可得函數(shù)的表達式為,當時,函數(shù)有最大值,,得,可得,結(jié)合,取得,函數(shù)的表達式是.故選:.【點睛】本題給出正弦型三角函數(shù)的圖象,求它的解析式.著重考查了三角函數(shù)的周期公式、三角函數(shù)的圖象的變換與解析式的求法等知識屬于中檔題.4、D【解析】根據(jù)題意,可知兩條直線都經(jīng)過軸上的同一點,且兩條直線的斜率互為相反數(shù),即可得兩條直線的對稱關(guān)系.【詳解】因為,都經(jīng)過軸上的點,且斜率互為相反數(shù),所以,關(guān)于軸對稱.故選:D【點睛】本題考查了兩條直線的位置關(guān)系,關(guān)于軸對稱的直線方程特征,屬于基礎(chǔ)題.5、A【解析】由已知得,,故選A.考點:兩角和的正弦公式6、B【解析】所以,所以。故選B。7、D【解析】利用輔助角公式化簡即可.【詳解】.故選:D8、B【解析】根據(jù)對數(shù)函數(shù)圖象特征及與圖象的關(guān)于軸對稱即可求解.【詳解】解:由對數(shù)函數(shù)圖象特征及與的圖象關(guān)于軸對稱,可確定②不已知函數(shù)圖象.故選:B.9、C【解析】根據(jù)棱柱的定義進行判斷即可【詳解】棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的多面體叫做棱柱,觀察圖形滿足棱柱概念的幾何體有:①③⑤,共三個故選:C【點睛】本題主要考查棱柱的概念,屬于簡單題.10、A【解析】在A中,∠C1AC是AC1與平面ABC所成的角,從而AC1與平面ABC所成的角為45°;在B中,連結(jié)OD,OD∥AC1,由此得到AC1∥平面CDB1;在C中,由CC1∥BB1,得∠AC1C是AC1與BB1所成的角,從而AC1與BB1所成的角為45°;在D中,連結(jié)OD,則OD∥AC1【詳解】由在直三棱柱ABC-A1B1C1中,AC=CC1,點D,O分別是AB,BC1的中點,知:在A中,∵CC1⊥平面ABC,∴∠C1AC是AC1與平面ABC所成的角,∵AC=CC1,∴∠C1AC=45°,∴AC1與平面ABC所成的角為45°,故A錯誤;在B中,連結(jié)OD,∵點D,O分別是AB,BC1的中點,∴OD∥AC1,∵OD?平面CDB1,AC1?平面CDB1,∴AC1∥平面CDB1,故B正確;在C中,∵CC1∥BB1,∴∠AC1C是AC1與BB1所成的角,∵AC=CC1,∴∠AC1C=45°,∴AC1與BB1所成的角為45°,故C正確;在D中,連結(jié)OD,∵點D,O分別是AB,BC1的中點,∴OD∥AC1,∵OD?平面CDB1,AC1?平面CDB1,∴AC1∥平面CDB1,故D正確故選A【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)與方程思想,是中檔題二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、【解析】利用扇形的面積求出扇形的半徑,再帶入弧長計算公式即可得出結(jié)果【詳解】解:由于扇形的圓心角為,扇形的面積為,則扇形的面積,解得:,此扇形所含的弧長.故答案為:.12、【解析】根據(jù)對數(shù)函數(shù)的真數(shù)大于0求解即可.【詳解】函數(shù)有意義,則,解得,所以函數(shù)的定義域為,故答案為:13、【解析】利用“1”的變形,結(jié)合基本不等式,求的最小值.【詳解】,當且僅當時,即等號成立,,解得:,,所以的最小值是.故答案為:14、1【解析】,故答案為115、【解析】設(shè)冪函數(shù)的解析式,然后代入求解析式,計算.【詳解】設(shè),則,解得,所以,得故答案為:三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1);(2).【解析】(1)根據(jù)最高點和最低點可求,結(jié)合周期可求,結(jié)合點的坐標可求,然后可得解析式;(2)根據(jù)解析式,利用整體代換的方法可求單調(diào)區(qū)間.【詳解】(1)由圖可得,所以;因為時,,所以,;所以.(2)令,,解得,即增區(qū)間為.【點睛】本題主要考查三角函數(shù)解析式的求解和單調(diào)區(qū)間的求解,單調(diào)區(qū)間一般利用整體代換的意識,側(cè)重考查數(shù)學抽象的核心素養(yǎng).17、(1);(2);(3).【解析】(1)利用兩向量平行有可得到一個關(guān)于的方程,利用三角函數(shù)恒等變化化簡進而求得x的值.(2)利用兩向量垂直有可得到一個關(guān)于的方程,利用三角函數(shù)恒等變化化簡進而求得x的值.(3)根據(jù)化出一個關(guān)于的方程,再利用恒等變化公式將函數(shù)轉(zhuǎn)化成,從而找到最小值所取得的x的值.【詳解】解:(1)∵向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π]與共線,∴,∴tanx=-,∵x∈[0,π],∴x=(2)∵⊥,∴cosx-sinx=0,∴tanx=1,∵x∈[0,π],∴x=(3)f(x)=?=cosx-,∵x∈[0,π],∴x-∈[-,],∴x-=時,f(x)取得最小值-2,∴當f(x)取得最小值時,x=【點睛】向量間的位置關(guān)系:兩向量垂直,則,兩向量平行,則.18、(1),;(2)為定義在上的減函數(shù),證明見解析;(3).【解析】(1)由可求得;根據(jù)奇函數(shù)定義知,由此構(gòu)造方程求得;(2)將函數(shù)整理為,設(shè),可證得,由此可得結(jié)論;(3)根據(jù)單調(diào)性和奇偶性可將不等式化為,結(jié)合的范圍可求得,由此可得結(jié)果.【小問1詳解】是定義在上的奇函數(shù),且,,解得:,,,解得:;當,時,,,滿足為奇函數(shù);綜上所述:,;【小問2詳解】由(1)得:;設(shè),則,,,,,是定義在上的減函數(shù);【小問3詳解】由得:,又為上的奇函數(shù),,,由(2)知:是定義在上的減函數(shù),,即,當時,,,即實數(shù)的取值范圍為.19、(1)(2)x=2或15x﹣8y﹣30=0【解析】(1)由圓心C在直線2x﹣y﹣2=0上,可設(shè)圓C的圓心為(a,2a﹣2),半徑為r,再由圓C過點A(1,4),B(3,6)兩點,列關(guān)于a,r的方程組,求解可得a,r的值,則圓C的方程可求;(2)當直線l的斜率不存在時,直線方程為x=2,求得M,N的坐標,可得|MN|=2,滿足題意;當直線l的斜率不存在時,設(shè)直線l的方程為y=k(x﹣2),則kx﹣y﹣2k=0,由|MN|=2,可得圓心到直線的距離為1,由點到直線的距離公式列式求得k值,則直線l的方程可求【詳解】解:(1)∵圓心C在直線2x﹣y﹣2=0上,∴設(shè)圓C的圓心為(a,2a﹣2),半徑為r,又∵圓C過點A(1,4),B(3,6)兩點,∴,解得,則圓C的方程為(x﹣3)2+(y﹣4)2=4;(2)當直線l的斜率不存在時,直線方程為x=2,聯(lián)立,解得M(2,4),N(2,4),此時|MN|;當直線l的斜率存在時,設(shè)直線l的方程為y=k(x﹣2),則kx﹣y﹣2k=0,∵|MN|=2,∴圓心到直線的距離為d,解得k,則直線l的方程為15x﹣8y﹣30=0,綜上,直線l的方程為x=2或15x﹣8y﹣30=0【點睛】本題考查圓的方程的求法,考查直線與圓位置關(guān)系的應(yīng)用,考查垂徑定理的應(yīng)用,是中檔題20、(1);(2)當時,扇形面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度酒水行業(yè)人才培養(yǎng)與交流合同
- 2025年度肉類蔬菜冷鏈物流車輛保險合同
- 二零二五年度門窗行業(yè)展會參展與廣告合作合同
- 2025年度電子商務(wù)平臺預(yù)約解除與商家權(quán)益保障合同
- 2025年度酒店與文創(chuàng)產(chǎn)業(yè)合作經(jīng)營合同
- 二零二五年度租賃合同解約及環(huán)保設(shè)施拆除協(xié)議
- 小學班主任培訓講話稿
- PLC上位機自動控制系統(tǒng)設(shè)備技術(shù)規(guī)范
- 交通安全在我心主題班會
- 雙11節(jié)產(chǎn)品活動策劃
- 兩家公司成立新公司合作協(xié)議書
- 小學四年級小數(shù)單位換算練習題100道
- 人教版七年級下冊數(shù)學-第五章-相交線與平行線-單元檢測題
- (正式版)HGT 22820-2024 化工安全儀表系統(tǒng)工程設(shè)計規(guī)范
- 項目質(zhì)量管理的溝通與協(xié)調(diào)機制
- 中醫(yī)常見的護理診斷及護理措施
- 設(shè)備技改方案范文
- 員工穩(wěn)定性保障措施及優(yōu)化方案
- 采煤機機械說明書樣本
- 慢性腎衰竭病人的護理教學
- 《中華民族共同體概論》考試復(fù)習題庫(含答案)
評論
0/150
提交評論