初中數(shù)學(xué)華東師大八年級(jí)上冊(cè)第章整式的乘除-多項(xiàng)式乘以多項(xiàng)式_第1頁(yè)
初中數(shù)學(xué)華東師大八年級(jí)上冊(cè)第章整式的乘除-多項(xiàng)式乘以多項(xiàng)式_第2頁(yè)
初中數(shù)學(xué)華東師大八年級(jí)上冊(cè)第章整式的乘除-多項(xiàng)式乘以多項(xiàng)式_第3頁(yè)
初中數(shù)學(xué)華東師大八年級(jí)上冊(cè)第章整式的乘除-多項(xiàng)式乘以多項(xiàng)式_第4頁(yè)
初中數(shù)學(xué)華東師大八年級(jí)上冊(cè)第章整式的乘除-多項(xiàng)式乘以多項(xiàng)式_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

一.復(fù)習(xí)1.單項(xiàng)式乘以單項(xiàng)式法則2.單項(xiàng)式乘以多項(xiàng)式法則-7a2b3c·2a3b=-14a5b4c2x·(3x2-xy+y2)=2x·3x2-2x·xy+2x·y2=6x3-2x2y+2xy2b窗口矮柜右側(cè)矮柜mn圖5-5

現(xiàn)在的人們,越來(lái)越重視廚房的設(shè)計(jì),不少家庭的廚房會(huì)沿墻做一排矮柜,使廚房的空間得到充分的利用,而且便于清理。下圖是一間廚房的平面布局:a我們?cè)鯓觼?lái)表示此廚房的總面積呢?二.新課a+bm+nabambmmab窗口矮柜右側(cè)矮柜mn圖5-5圖5-6圖5-7由圖5-6,可得總面積為(a+b)(m+n);由圖5-7,可得總面積為a(m+n)+b(m+n)或am+an+bm+bn.anbnna

參考圖5-6與圖5-7

試試看,你可以有哪幾種方法來(lái)表示此廚房的總面積?(1)

(2)

(3)

(a+b)(m+n)

ambnanbmmnm+n

a+bab

ambnanbmam+an+bm+bn=問(wèn)題

&

探索+++1234(a+b)(m+n)=am1234+an+bm+bn問(wèn)題

&

探索多項(xiàng)式的乘法法則:

多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)分別乘以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。

1234(a+b)(m+n)=am1234+an+bm+bn問(wèn)題

&

探索試一試三例題例1、計(jì)算:(1)(2)1234(a+b)(m+n)=am1234+an+bm+bn直接利用:多項(xiàng)式乘以多項(xiàng)式的法則參考解答:例2、計(jì)算:學(xué)一學(xué)感悟新知(1)(2x+5y)(3x-2y)解:原式=6x2-4xy+15yx-10y2=6x2+11xy-10y2(2)8x2-(x-2)(3x+1)-2(x+1)(x-5)解:原式=8x2-(3x2+x-6x-2)-2(x2-5x+x-5)=8x2-(3x2-5x-2)-2(x2-4x-5)=8x2-3x2+5x+2-2x2+8x+10=3x2+13x+12分析:在(2)中減去的是積,而積是一個(gè)多項(xiàng)式,應(yīng)暫時(shí)將積看作一個(gè)整體,因此要注意添加括號(hào).例3(拓展例題)若(-2x+a)(x-1)的結(jié)果中不含x的一次項(xiàng),求a的值.解:(-2x+a)(x-1)=-2x2+2x+ax-a=-2x2+(2+a)x-a而結(jié)果中不含x的一次項(xiàng)0∴2+a=0解得a=-2解析點(diǎn)評(píng):不含x的一次項(xiàng),即x的項(xiàng)的系數(shù)為0四.練習(xí)1.計(jì)算:(1)(x-3y)(x+7y)(2)(x+5)(x-7)(3)(x+5y)(x-7y)(4)(x+5)(x+6)(5)(3x+4)(3x-4)(6)(2x+1)(2x+3)(7)(3x+1)(2x-3)-(3x-5)(x-4)答案:(1)x2+4xy-21y2(2)x2-2x-35(3)x2-2xy-35y2(4)x2+11x+30(5)9x2-16(6)4x2+8x+3(7)3x2+10x-232.(拓展練習(xí))多項(xiàng)式(mx+8)(2-3x)展開(kāi)后不含x的一次項(xiàng),求m的值解:(mx+8)(2-3x)=2mx-3mx2+16-24x=(2m-24)x-3mx2+16=-3mx2+(2m-24)x+16∵原式展開(kāi)后不含x的一次項(xiàng)∴2m-24=0解得m=121.多項(xiàng)式乘以多項(xiàng)式的法則2.運(yùn)用法則計(jì)算時(shí)應(yīng)注意的幾點(diǎn):(1).要用一個(gè)多項(xiàng)式的每一項(xiàng)去乘以另一個(gè)多項(xiàng)式的每一項(xiàng),不要漏乘;(2).兩個(gè)多項(xiàng)式相乘,展開(kāi)后在合并同類(lèi)項(xiàng)之前,積的項(xiàng)數(shù)應(yīng)等于這個(gè)多項(xiàng)式項(xiàng)數(shù)的識(shí).(3).多項(xiàng)式的每一項(xiàng)都應(yīng)帶上它前面的正負(fù)號(hào),計(jì)算時(shí)一定要細(xì)心;(4).展開(kāi)后,有同類(lèi)項(xiàng)的一定要合并同類(lèi)項(xiàng).小結(jié)六.作業(yè)1.計(jì)算:(x-1)(x2+x+1)(x-2)(2x-3)-x(1-2x)(3-x)-5x(-x2+2x+1)-(2x+3)(5-x2)答案:(1)x3-1(2)-2x3+9x2-10x+6(3)7x3-7x2-15x-152.先化簡(jiǎn),再求值:2(x-8)(x+6)-(2x-1)(x+3)其中x=-5答案:-9x-93=-9×(-5)-93=-483.多項(xiàng)式(x2+mx+n)(x2-3x+4)展開(kāi)后不含x3項(xiàng)和x2項(xiàng),求m,n的值.解:(x2+mx+n)(x2-3x+4)=x4-3x3+4x2+mx3-3mx2+4mx+nx2-3nx+4n=x4+(m-3)x3+(4-3m+n)x2+(4m-3n)x+4n∵原式展開(kāi)后不含x3項(xiàng)和x2項(xiàng)∴m-3=04-3m+n=0解得m=3n=54.(能力提升)已知(x+1)(x2+ax+5)=x3+bx2+3x+5求a,b的值.答

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論