版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.把拋物線y=﹣2x2向上平移1個(gè)單位,得到的拋物線是()A.y=﹣2x2+1 B.y=﹣2x2﹣1 C.y=﹣2(x+1)2 D.y=﹣2(x﹣1)22.對(duì)于反比例函數(shù),下列說法不正確的是()A.點(diǎn)(﹣2,﹣1)在它的圖象上 B.它的圖象在第一、三象限C.當(dāng)x>0時(shí),y隨x的增大而增大 D.當(dāng)x<0時(shí),y隨x的增大而減小3.若拋物線y=kx2﹣2x﹣1與x軸有兩個(gè)不同的交點(diǎn),則k的取值范圍為()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠04.如圖是一個(gè)放置在水平桌面的錐形瓶,它的俯視圖是()A. B. C. D.5.如圖,正方形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結(jié)論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正確的有()個(gè).A.2 B.3 C.4 D.56.已知∠BAC=45。,一動(dòng)點(diǎn)O在射線AB上運(yùn)動(dòng)(點(diǎn)O與點(diǎn)A不重合),設(shè)OA=x,如果半徑為1的⊙O與射線AC有公共點(diǎn),那么x的取值范圍是()A.0<x≤1 B.1≤x< C.0<x≤ D.x>7.某校今年共畢業(yè)生297人,其中女生人數(shù)為男生人數(shù)的65%,則該校今年的女畢業(yè)生有()A.180人B.117人C.215人D.257人8.已知a,b為兩個(gè)連續(xù)的整數(shù),且a<<b,則a+b的值為()A.7 B.8 C.9 D.109.如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,則DE=()A.1 B.2 C.3 D.410.下列各圖中,∠1與∠2互為鄰補(bǔ)角的是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.已知一個(gè)多邊形的每一個(gè)外角都等于,則這個(gè)多邊形的邊數(shù)是.12.計(jì)算:(﹣2a3)2=_____.13.若分式方程的解為正數(shù),則a的取值范圍是______________.14.用一直徑為10cm的玻璃球和一個(gè)圓錐形的牛皮紙紙帽可以制成一個(gè)不倒翁玩具,不倒翁的軸剖面圖如圖所示,圓錐的母線AB與⊙O相切于點(diǎn)B,不倒翁的頂點(diǎn)A到桌面L的最大距離是18cm.若將圓錐形紙帽的表面全涂上顏色,則需要涂色部分的面積約為cm2(精確到1cm2).15.若是關(guān)于的完全平方式,則__________.16.在一個(gè)不透明的布袋中,紅色、黑色的玻璃球共有20個(gè),這些球除顏色外其它完全相同.將袋中的球攪勻,從中隨機(jī)摸出一個(gè)球,記下顏色后再放回袋中,不斷地重復(fù)這個(gè)過程,摸了200次后,發(fā)現(xiàn)有60次摸到黑球,請(qǐng)你估計(jì)這個(gè)袋中紅球約有_____個(gè).17.如圖所示,點(diǎn)C在反比例函數(shù)的圖象上,過點(diǎn)C的直線與x軸、y軸分別交于點(diǎn)A、B,且,已知的面積為1,則k的值為______.三、解答題(共7小題,滿分69分)18.(10分)已知,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)設(shè)點(diǎn)M在拋物線的對(duì)稱軸上,當(dāng)△MAC是以AC為直角邊的直角三角形時(shí),求點(diǎn)M的坐標(biāo).19.(5分)如圖①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直徑,⊙O交AC于點(diǎn)D,過點(diǎn)D的直線交BC于點(diǎn)E,交AB的延長(zhǎng)線于點(diǎn)P,∠A=∠PDB.(1)求證:PD是⊙O的切線;(2)若AB=4,DA=DP,試求弧BD的長(zhǎng);(3)如圖②,點(diǎn)M是弧AB的中點(diǎn),連結(jié)DM,交AB于點(diǎn)N.若tanA=12,求DN20.(8分)已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=40°.(1)如圖1,若D為弧AB的中點(diǎn),求∠ABC和∠ABD的度數(shù);(2)如圖2,過點(diǎn)D作⊙O的切線,與AB的延長(zhǎng)線交于點(diǎn)P,若DP∥AC,求∠OCD的度數(shù).21.(10分)如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖像與邊長(zhǎng)是6的正方形的兩邊,分別相交于,兩點(diǎn).若點(diǎn)是邊的中點(diǎn),求反比例函數(shù)的解析式和點(diǎn)的坐標(biāo);若,求直線的解析式及的面積22.(10分)如圖,在△ABC中,點(diǎn)D,E分別在邊AB,AC上,且BE平分∠ABC,∠ABE=∠ACD,BE,CD交于點(diǎn)F.(1)求證:;(2)請(qǐng)?zhí)骄烤€段DE,CE的數(shù)量關(guān)系,并說明理由;(3)若CD⊥AB,AD=2,BD=3,求線段EF的長(zhǎng).23.(12分)如今,旅游度假成為了中國(guó)人慶祝傳統(tǒng)春節(jié)的一項(xiàng)的“新年俗”,山西省旅發(fā)委發(fā)布的《2018年“春節(jié)”假日旅游市場(chǎng)總結(jié)分析報(bào)告》中稱:山西春節(jié)旅游供需兩旺,實(shí)現(xiàn)了“旅游接待”與“經(jīng)濟(jì)效益”的雙豐收,請(qǐng)根據(jù)圖表信息解決問題:(1)如圖1所示,山西近五年春節(jié)假日接待海內(nèi)外游客的數(shù)量逐年增加,2018年首次突破了“千萬”大關(guān),達(dá)到萬人次,比2017年春節(jié)假日增加萬人次.(2)2018年2月15日﹣20日期間,山西省35個(gè)重點(diǎn)景區(qū)每日接待游客數(shù)量如下:日期2月15日(除夕)2月16日(初一)2月17日(初二)2月18日(初三)2月19日(初四)2月20日(初五)日接待游客數(shù)量(萬人次)7.5682.83119.5184.38103.2151.55這組數(shù)據(jù)的中位數(shù)是萬人次.(3)根據(jù)圖2中的信息預(yù)估:2019年春節(jié)假日山西旅游總收入比2018年同期增長(zhǎng)的百分率約為,理由是.(4)春節(jié)期間,小明在“青龍古鎮(zhèn)第一屆新春廟會(huì)”上購買了A,B,C,D四枚書簽(除圖案外完全相同).正面分別印有“剪紙藝術(shù)”、“國(guó)粹京劇”、“陶瓷藝術(shù)”、“皮影戲”的圖案(如圖3),他將書簽背面朝上放在桌面上,從中隨機(jī)挑選兩枚送給好朋友,求送給好朋友的兩枚書簽中恰好有“剪紙藝術(shù)”的概率.24.(14分)如圖,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中點(diǎn),ED的延長(zhǎng)線與CB的延長(zhǎng)線相交于點(diǎn)F.求證:DF是BF和CF的比例中項(xiàng);在AB上取一點(diǎn)G,如果AE?AC=AG?AD,求證:EG?CF=ED?DF.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】
根據(jù)“上加下減”的原則進(jìn)行解答即可.【詳解】解:由“上加下減”的原則可知,把拋物線y=﹣2x2向上平移1個(gè)單位,得到的拋物線是:y=﹣2x2+1.故選A.【點(diǎn)睛】本題考查的是二次函數(shù)的圖象與幾何變換,熟知“上加下減”的原則是解答此題的關(guān)鍵.2、C【解析】
由題意分析可知,一個(gè)點(diǎn)在函數(shù)圖像上則代入該點(diǎn)必定滿足該函數(shù)解析式,點(diǎn)(-2,-1)代入可得,x=-2時(shí),y=-1,所以該點(diǎn)在函數(shù)圖象上,A正確;因?yàn)?大于0所以該函數(shù)圖象在第一,三象限,所以B正確;C中,因?yàn)?大于0,所以該函數(shù)在x>0時(shí),y隨x的增大而減小,所以C錯(cuò)誤;D中,當(dāng)x<0時(shí),y隨x的增大而減小,正確,故選C.考點(diǎn):反比例函數(shù)【點(diǎn)睛】本題屬于對(duì)反比例函數(shù)的基本性質(zhì)以及反比例函數(shù)的在各個(gè)象限單調(diào)性的變化3、C【解析】
根據(jù)拋物線y=kx2﹣2x﹣1與x軸有兩個(gè)不同的交點(diǎn),得出b2﹣4ac>0,進(jìn)而求出k的取值范圍.【詳解】∵二次函數(shù)y=kx2﹣2x﹣1的圖象與x軸有兩個(gè)交點(diǎn),∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵拋物線y=kx2﹣2x﹣1為二次函數(shù),∴k≠0,則k的取值范圍為k>﹣1且k≠0,故選C.【點(diǎn)睛】本題考查了二次函數(shù)y=ax2+bx+c的圖象與x軸交點(diǎn)的個(gè)數(shù)的判斷,熟練掌握拋物線與x軸交點(diǎn)的個(gè)數(shù)與b2-4ac的關(guān)系是解題的關(guān)鍵.注意二次項(xiàng)系數(shù)不等于0.4、B【解析】
根據(jù)俯視圖是從上面看到的圖形解答即可.【詳解】錐形瓶從上面往下看看到的是兩個(gè)同心圓.故選B.【點(diǎn)睛】本題考查三視圖的知識(shí),解決此類圖的關(guān)鍵是由三視圖得到相應(yīng)的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實(shí)線,被遮擋的線畫虛線.5、C【解析】
根據(jù)AF是∠BAC的平分線,BH⊥AF,可證AF為BG的垂直平分線,然后再根據(jù)正方形內(nèi)角及角平分線進(jìn)行角度轉(zhuǎn)換證明EG=EB,F(xiàn)G=FB,即可判定②選項(xiàng);設(shè)OA=OB=OC=a,菱形BEGF的邊長(zhǎng)為b,由四邊形BEGF是菱形轉(zhuǎn)換得到CF=GF=BF,由四邊形ABCD是正方形和角度轉(zhuǎn)換證明△OAE≌△OBG,即可判定①;則△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的關(guān)系式,再由△PGC∽△BGA,得到=1+,從而判斷得出④;得出∠EAB=∠GBC從而證明△EAB≌△GBC,即可判定③;證明△FAB≌△PBC得到BF=CP,即可求出,從而判斷⑤.【詳解】解:∵AF是∠BAC的平分線,∴∠GAH=∠BAH,∵BH⊥AF,∴∠AHG=∠AHB=90°,在△AHG和△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是線段BG的垂直平分線,∴EG=EB,F(xiàn)G=FB,∵四邊形ABCD是正方形,∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四邊形BEGF是菱形;②正確;設(shè)OA=OB=OC=a,菱形BEGF的邊長(zhǎng)為b,∵四邊形BEGF是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,∠CGF=90°,∴CF=GF=BF,∵四邊形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°,∵BH⊥AF,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠OAE=∠OBG,在△OAE和△OBG中,∴△OAE≌△OBG(ASA),①正確;∴OG=OE=a﹣b,∴△GOE是等腰直角三角形,∴GE=OG,∴b=(a﹣b),整理得a=b,∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,∵四邊形ABCD是正方形,∴PC∥AB,∴===1+,∵△OAE≌△OBG,∴AE=BG,∴=1+,∴==1﹣,④正確;∵∠OAE=∠OBG,∠CAB=∠DBC=45°,∴∠EAB=∠GBC,在△EAB和△GBC中,∴△EAB≌△GBC(ASA),∴BE=CG,③正確;在△FAB和△PBC中,∴△FAB≌△PBC(ASA),∴BF=CP,∴====,⑤錯(cuò)誤;綜上所述,正確的有4個(gè),故選:C.【點(diǎn)睛】本題綜合考查了全等三角形的判定與性質(zhì),相似三角形,菱形的判定與性質(zhì)等四邊形的綜合題.該題難度較大,需要學(xué)生對(duì)有關(guān)于四邊形的性質(zhì)的知識(shí)有一系統(tǒng)的掌握.6、C【解析】如下圖,設(shè)⊙O與射線AC相切于點(diǎn)D,連接OD,∴∠ADO=90°,∵∠BAC=45°,∴△ADO是等腰直角三角形,∴AD=DO=1,∴OA=,此時(shí)⊙O與射線AC有唯一公共點(diǎn)點(diǎn)D,若⊙O再向右移動(dòng),則⊙O與射線AC就沒有公共點(diǎn)了,∴x的取值范圍是.故選C.7、B【解析】
設(shè)男生為x人,則女生有65%x人,根據(jù)今年共畢業(yè)生297人列方程求解即可.【詳解】設(shè)男生為x人,則女生有65%x人,由題意得,x+65%x=297,解之得x=180,297-180=117人.故選B.【點(diǎn)睛】本題考查了一元一次方程的應(yīng)用,根據(jù)題意找出等量關(guān)系列出方程是解答本題的關(guān)鍵.8、A【解析】∵9<11<16,∴,即,∵a,b為兩個(gè)連續(xù)的整數(shù),且,∴a=3,b=4,∴a+b=7,故選A.9、B【解析】
根據(jù)余角的性質(zhì),可得∠DCA與∠CBE的關(guān)系,根據(jù)AAS可得△ACD與△CBE的關(guān)系,根據(jù)全等三角形的性質(zhì),可得AD與CE的關(guān)系,根據(jù)線段的和差,可得答案.【詳解】∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE?CD=3?1=2,故答案選:B.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì).10、D【解析】根據(jù)鄰補(bǔ)角的定義可知:只有D圖中的是鄰補(bǔ)角,其它都不是.故選D.二、填空題(共7小題,每小題3分,滿分21分)11、5【解析】
∵多邊形的每個(gè)外角都等于72°,∵多邊形的外角和為360°,∴360°÷72°=5,∴這個(gè)多邊形的邊數(shù)為5.故答案為5.12、4a1.【解析】
根據(jù)積的乘方運(yùn)算法則進(jìn)行運(yùn)算即可.【詳解】原式故答案為【點(diǎn)睛】考查積的乘方,掌握運(yùn)算法則是解題的關(guān)鍵.13、a<8,且a≠1【解析】分式方程去分母得:x=2x-8+a,解得:x=8-a,根據(jù)題意得:8-a>2,8-a≠1,解得:a<8,且a≠1.故答案為:a<8,且a≠1.【點(diǎn)睛】分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,根據(jù)分式方程解為正數(shù)求出a的范圍即可.此題考查了分式方程的解,需注意在任何時(shí)候都要考慮分母不為2.14、174cm1.【解析】直徑為10cm的玻璃球,玻璃球半徑OB=5,所以AO=18?5=13,由勾股定理得,AB=11,∵BD×AO=AB×BO,BD=,圓錐底面半徑=BD=,圓錐底面周長(zhǎng)=1×π,側(cè)面面積=×1×π×11=.點(diǎn)睛:利用勾股定理可求得圓錐的母線長(zhǎng),進(jìn)而過B作出垂線,得到圓錐的底面半徑,那么圓錐的側(cè)面積=底面周長(zhǎng)×母線長(zhǎng)÷1.本題是一道綜合題,考查的知識(shí)點(diǎn)較多,利用了勾股定理,圓的周長(zhǎng)公式、圓的面積公式和扇形的面積公式求解.把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題求解是本題的解題關(guān)鍵.15、1或-1【解析】【分析】直接利用完全平方公式的定義得出2(m-3)=±8,進(jìn)而求出答案.詳解:∵x2+2(m-3)x+16是關(guān)于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案為-1或1.點(diǎn)睛:此題主要考查了完全平方公式,正確掌握完全平方公式的基本形式是解題關(guān)鍵.16、1【解析】
估計(jì)利用頻率估計(jì)概率可估計(jì)摸到黑球的概率為0.3,然后根據(jù)概率公式計(jì)算這個(gè)口袋中黑球的數(shù)量,繼而得出答案.【詳解】因?yàn)楣裁?00次球,發(fā)現(xiàn)有60次摸到黑球,所以估計(jì)摸到黑球的概率為0.3,所以估計(jì)這個(gè)口袋中黑球的數(shù)量為20×0.3=6(個(gè)),則紅球大約有20-6=1個(gè),故答案為:1.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率:大量重復(fù)實(shí)驗(yàn)時(shí),事件發(fā)生的頻率在某個(gè)固定位置左右擺動(dòng),并且擺動(dòng)的幅度越來越小,根據(jù)這個(gè)頻率穩(wěn)定性定理,可以用頻率的集中趨勢(shì)來估計(jì)概率,這個(gè)固定的近似值就是這個(gè)事件的概率.用頻率估計(jì)概率得到的是近似值,隨實(shí)驗(yàn)次數(shù)的增多,值越來越精確.17、1【解析】
根據(jù)題意可以設(shè)出點(diǎn)A的坐標(biāo),從而以得到點(diǎn)C和點(diǎn)B的坐標(biāo),再根據(jù)的面積為1,即可求得k的值.【詳解】解:設(shè)點(diǎn)A的坐標(biāo)為,過點(diǎn)C的直線與x軸,y軸分別交于點(diǎn)A,B,且,的面積為1,點(diǎn),點(diǎn)B的坐標(biāo)為,,解得,,故答案為:1.【點(diǎn)睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義、一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.三、解答題(共7小題,滿分69分)18、(1)y=﹣x2+2x+1;(2)當(dāng)△MAC是直角三角形時(shí),點(diǎn)M的坐標(biāo)為(1,)或(1,﹣).【解析】
(1)由點(diǎn)A、C的坐標(biāo),利用待定系數(shù)法即可求出拋物線的解析式;(2)設(shè)點(diǎn)M的坐標(biāo)為(1,m),則CM=,AC=,AM=,分∠ACM=90°和∠CAM=90°兩種情況,利用勾股定理可得出關(guān)于m的方程,解之可得出m的值,進(jìn)而即可得出點(diǎn)M的坐標(biāo).【詳解】(1)將A(﹣1,0)、C(0,1)代入y=﹣x2+bx+c中,得:,解得:,∴拋物線的解析式為y=﹣x2+2x+1.(2)∵y=﹣x2+2x+1=﹣(x﹣1)2+4,設(shè)點(diǎn)M的坐標(biāo)為(1,m),則CM=,AC==,AM=.分兩種情況考慮:①當(dāng)∠ACM=90°時(shí),有AM2=AC2+CM2,即4+m2=10+1+(m﹣1)2,解得:m=,∴點(diǎn)M的坐標(biāo)為(1,);②當(dāng)∠CAM=90°時(shí),有CM2=AM2+AC2,即1+(m﹣1)2=4+m2+10,解得:m=﹣,∴點(diǎn)M的坐標(biāo)為(1,﹣).綜上所述:當(dāng)△MAC是直角三角形時(shí),點(diǎn)M的坐標(biāo)為(1,)或(1,﹣).【點(diǎn)睛】本題考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)圖象的點(diǎn)的坐標(biāo)特征以及勾股定理等知識(shí)點(diǎn).19、(1)見解析;(2)23π;(3)【解析】
(1)連結(jié)OD;由AB是⊙O的直徑,得到∠ADB=90°,根據(jù)等腰三角形的性質(zhì)得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圓上,于是得到結(jié)論;(2)設(shè)∠A=x,則∠A=∠P=x,∠DBA=2x,在△ABD中,根據(jù)∠A+∠ABD=90o列方程求出x的值,進(jìn)而可得到∠DOB=60o,然后根據(jù)弧長(zhǎng)公式計(jì)算即可;(3)連結(jié)OM,過D作DF⊥AB于點(diǎn)F,然后證明△OMN∽△FDN,根據(jù)相似三角形的性質(zhì)求解即可.【詳解】(1)連結(jié)OD,∵AB是⊙O的直徑,∴∠ADB=90o,∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,且D在圓上,∴PD是⊙O的切線.(2)設(shè)∠A=x,∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,在△ABD中,∠A+∠ABD=90o,x=2x=90o,即x=30o,∴∠DOB=60o,∴弧BD長(zhǎng)l=60·π·2(3)連結(jié)OM,過D作DF⊥AB于點(diǎn)F,∵點(diǎn)M是的中點(diǎn),∴OM⊥AB,設(shè)BD=x,則AD=2x,AB=5x=2OM,即OM=5在Rt△BDF中,DF=25由△OMN∽△FDN得DNMN【點(diǎn)睛】本題是圓的綜合題,考查了切線的判定,圓周角定理及其推論,三角形外角的性質(zhì),含30°角的直角三角形的性質(zhì),弧長(zhǎng)的計(jì)算,弧弦圓心角的關(guān)系,相似三角形的判定與性質(zhì).熟練掌握切線的判定方法是解(1)的關(guān)鍵,求出∠A=30o是解(2)的關(guān)鍵,證明△OMN∽△FDN是解(3)的關(guān)鍵.20、(1)45°;(2)26°.【解析】
(1)根據(jù)圓周角和圓心角的關(guān)系和圖形可以求得∠ABC和∠ABD的大??;(2)根據(jù)題意和平行線的性質(zhì)、切線的性質(zhì)可以求得∠OCD的大?。驹斀狻浚?)∵AB是⊙O的直徑,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D為弧AB的中點(diǎn),∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)連接OD,∵DP切⊙O于點(diǎn)D,∴OD⊥DP,即∠ODP=90°,∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一個(gè)外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.【點(diǎn)睛】本題考查切線的性質(zhì)、圓周角定理,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.21、(1),N(3,6);(2)y=-x+2,S△OMN=3.【解析】
(1)求出點(diǎn)M坐標(biāo),利用待定系數(shù)法即可求得反比例函數(shù)的解析式,把N點(diǎn)的縱坐標(biāo)代入解析式即可求得橫坐標(biāo);
(2)根據(jù)M點(diǎn)的坐標(biāo)與反比例函數(shù)的解析式,求得N點(diǎn)的坐標(biāo),利用待定系數(shù)法求得直線MN的解析式,根據(jù)△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN即可得到答案.【詳解】解:(1)∵點(diǎn)M是AB邊的中點(diǎn),∴M(6,3).∵反比例函數(shù)y=經(jīng)過點(diǎn)M,∴3=.∴k=1.∴反比例函數(shù)的解析式為y=.當(dāng)y=6時(shí),x=3,∴N(3,6).(2)由題意,知M(6,2),N(2,6).設(shè)直線MN的解析式為y=ax+b,則,解得,∴直線MN的解析式為y=-x+2.∴S△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN=36-6-6-2=3.【點(diǎn)睛】本題考查了反比例函數(shù)的系數(shù)k的幾何意義,待定系數(shù)法求一次函數(shù)的解析式和反比例函數(shù)的解析式,正方形的性質(zhì),求得M、N點(diǎn)的坐標(biāo)是解題的關(guān)鍵.22、(1)證明見解析;(2)DE=CE,理由見解析;(3).【解析】試題分析:(1)證明△ABE∽△ACD,從而得出結(jié)論;(2)先證明∠CDE=∠ACD,從而得出結(jié)論;(3)解直角三角形示得.試題解析:(1)∵∠ABE
=∠ACD,∠A=∠A,∴△ABE∽△ACD,∴;(2)∵,∴,又∵∠A=∠A,∴△ADE∽△ACB,∴∠AED
=∠ABC,∵∠AED
=∠ACD+∠CDE,∠ABC=∠ABE+∠CBE,∴∠ACD+∠CDE=∠ABE+∠CBE,∵∠ABE
=∠ACD,∴∠CDE=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CDE=∠ABE=∠ACD,∴DE=CE;(3)∵CD⊥AB,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=∠CDE+∠ADE=90°,∵∠ABE
=∠ACD,∠CDE=∠ACD,∴∠A=∠ADE,∠BEC=∠ABE+∠A=∠A+∠ACD=90°,∴AE=DE,BE⊥AC,∵DE=CE,∴AE=DE=CE,∴AB=BC,∵AD=2,BD=3,∴BC=AB=AD+BD=5,在Rt△BDC中,,在Rt△ADC中,,∴,∵∠ADC=∠FEC=90°,∴,∴.23、(1)1365.45、414.4(2)93
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 體育用品店會(huì)員制度設(shè)計(jì)與運(yùn)營(yíng)策略
- 公客戶金融素養(yǎng)提升的實(shí)踐與思考
- 企業(yè)創(chuàng)意傳播中的藝術(shù)鑒賞策略分析
- 電氣化鐵路牽引供變電技術(shù)-第八章-二次接線
- 辦公區(qū)域中分布式變電站的創(chuàng)新規(guī)劃
- 企業(yè)健康管理與員工福利策略
- 以科技為支撐的家庭教育未來發(fā)展展望
- 全民健身背景下學(xué)校體育活動(dòng)的規(guī)劃與實(shí)施策略
- 2025路基土石方 工程 工程專業(yè)分包合同
- 以創(chuàng)新思維為兒童音教設(shè)計(jì)特色課程方案
- 業(yè)務(wù)員手冊(cè)內(nèi)容
- 計(jì)劃分配率和實(shí)際分配率_CN
- pH值的測(cè)定方法
- 《紅燈停綠燈行》ppt課件
- 小學(xué)語文作文技巧六年級(jí)寫人文章寫作指導(dǎo)(課堂PPT)
- 《APQP培訓(xùn)資料》
- PWM脈寬直流調(diào)速系統(tǒng)設(shè)計(jì)及 matlab仿真驗(yàn)證
- 家具銷售合同,家居訂購訂貨協(xié)議A4標(biāo)準(zhǔn)版(精編版)
- 食品加工與保藏課件
- 有功、無功控制系統(tǒng)(AGCAVC)技術(shù)規(guī)范書
- 儲(chǔ)罐施工計(jì)劃
評(píng)論
0/150
提交評(píng)論