2022-2023學年福建省福州市臺江區(qū)福州華倫中學九年級數(shù)學第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
2022-2023學年福建省福州市臺江區(qū)福州華倫中學九年級數(shù)學第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
2022-2023學年福建省福州市臺江區(qū)福州華倫中學九年級數(shù)學第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
2022-2023學年福建省福州市臺江區(qū)福州華倫中學九年級數(shù)學第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
2022-2023學年福建省福州市臺江區(qū)福州華倫中學九年級數(shù)學第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
免費預覽已結束,剩余16頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.如圖所示,在⊙O中,=,∠A=30°,則∠B=()A.150° B.75° C.60° D.15°2.下列對二次函數(shù)的圖象的描述,正確的是()A.開口向下 B.對稱軸是軸C.當時,有最小值是 D.在對稱軸左側隨的增大而增大3.將一元二次方程化成一般式后,二次項系數(shù)和一次項系數(shù)分別為()A.4,3 B.4,7 C.4,-3 D.4.下列計算,正確的是()A.a(chǎn)2·a3=a6 B.3a2-a2=2 C.a(chǎn)8÷a2=a4 D.(a2)3=a65.如圖,已知⊙O的半徑是2,點A、B、C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為()A.π﹣2 B.π﹣ C.π﹣2 D.π﹣6.拋物線y=x2+2x+m﹣1與x軸有兩個不同的交點,則m的取值范圍是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣27.若點A(﹣2,y1),B(﹣1,y2),C(4,y3)都在二次函數(shù)的圖象上,則下列結論正確的是()A. B. C. D.8.如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下:甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.根據(jù)兩人的作法可判斷()A.甲正確,乙錯誤 B.乙正確,甲錯誤 C.甲、乙均正確 D.甲、乙均錯誤9.用配方法解方程時,配方后所得的方程為()A. B. C. D.10.如圖,一個幾何體的主視圖和左視圖都是邊長為1的正方形,俯視圖是一個圓,那么這個幾何體的側面積為()A. B. C. D.二、填空題(每小題3分,共24分)11.有三張正面分別寫有數(shù)字﹣1,1,2的卡片,它們背面完全相同,現(xiàn)將這三張卡片背面朝上洗勻后隨即抽取一張,以其正面數(shù)字作為a的值,然后再從剩余的兩張卡片隨機抽一張,以其正面的數(shù)字作為b的值,則點(a,b)在第二象限的概率為_____.12.拋物線y=x2–6x+5的頂點坐標為__________.13.某小區(qū)2019年的綠化面積為3000m2,計劃2021年的綠化面積為4320m2,如果每年綠化面積的增長率相同,設增長率為x,則可列方程為______.14.如圖,在△ABC中,AB=3,AC=4,BC=6,D是BC上一點,CD=2,過點D的直線l將△ABC分成兩部分,使其所分成的三角形與△ABC相似,若直線l與△ABC另一邊的交點為點P,則DP=________.15.已知a是方程2x2﹣x﹣4=0的一個根,則代數(shù)式4a2﹣2a+1的值為_____.16.已知tan(α+15°)=,則銳角α的度數(shù)為______°.17.如圖,在平面直角坐標系中,矩形的頂點O落在坐標原點,點A、點C分別位于x軸,y軸的正半軸,G為線段上一點,將沿翻折,O點恰好落在對角線上的點P處,反比例函數(shù)經(jīng)過點B.二次函數(shù)的圖象經(jīng)過、G、A三點,則該二次函數(shù)的解析式為_______.(填一般式)18.若關于x的一元二次方程有實數(shù)根,則m的取值范圍是___________.三、解答題(共66分)19.(10分)如圖,函數(shù)y=2x和y=﹣x+4的圖象相交于點A,(1)求點A的坐標;(2)根據(jù)圖象,直接寫出不等式2x≥﹣x+4的解集.20.(6分)如圖,二次函數(shù)的圖像經(jīng)過,兩點.(1)求該函數(shù)的解析式;(2)若該二次函數(shù)圖像與軸交于、兩點,求的面積;(3)若點在二次函數(shù)圖像的對稱軸上,當周長最短時,求點的坐標.21.(6分)如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣1,4),C(﹣3,2)(1)畫出△ABC關于點B成中心對稱的圖形△A1BC1;(2)以原點O為位似中心,位似比為1:2,在y軸的左側畫出△ABC放大后的圖形△A2B2C2,并直接寫出C2的坐標.22.(8分)如圖,Rt△ABO的頂點A是雙曲線與直線y=?x?(k+1)在第二象限的交點,AB⊥x軸于B且S△ABO=.(1)求這兩個函數(shù)的解析式.(2)求直線與雙曲線的兩個交點A,C的坐標和△AOC的面積.23.(8分)已知三個頂點的坐標分別.(1)畫出;(2)以B為位似中心,將放大到原來的2倍,在右圖的網(wǎng)格圖中畫出放大后的圖形△;(3)寫出點A的對應點的坐標:___.24.(8分)(1)解方程:(2)如圖,正六邊形的邊長為2,以點為圓心,長為半徑畫弧,求弧的長.25.(10分)在中,,,以點為圓心、為半徑作圓,設點為⊙上一點,線段繞著點順時針旋轉,得到線段,連接、.(1)在圖中,補全圖形,并證明.(2)連接,若與⊙相切,則的度數(shù)為.(3)連接,則的最小值為;的最大值為.26.(10分)如圖,在邊長為1的正方形網(wǎng)格中,△ABC的頂點均在格點上,點A、B的坐標分別是A(4,3)、B(4,1),把△ABC繞點C逆時針旋轉90°后得到△A1B1C.(1)畫出△A1B1C,直接寫出點A1、B1的坐標;(2)求在旋轉過程中,△ABC所掃過的面積.

參考答案一、選擇題(每小題3分,共30分)1、B【詳解】∵在⊙O中,=,∴AB=AC,∴△ABC是等腰三角形,∴∠B=∠C;又∠A=30°,∴∠B==75°(三角形內角和定理).故選B.考點:圓心角、弧、弦的關系.2、C【分析】根據(jù)二次函數(shù)的性質分別判斷后即可確定正確的選項.【詳解】解:A、∵a=1>0,

∴拋物線開口向上,選項A不正確;

B、∵-=,

∴拋物線的對稱軸為直線x=,選項B不正確;

C、當x=時,y=-,

∴當x=時,y有最小值是-,選項C正確;

D、∵a>0,拋物線的對稱軸為直線x=,

∴當x>時,y隨x值的增大而增大,選項D不正確.

故選:C.【點睛】本題考查了二次函數(shù)的性質以及二次函數(shù)的圖象,利用二次函數(shù)的性質逐一分析四個選項的正誤是解題的關鍵.3、C【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常數(shù)且a≠0)特別要注意a≠0的條件.這是在做題過程中容易忽視的知識點.在一般形式中ax2叫二次項,bx叫一次項,c是常數(shù)項.其中a,b,c分別叫二次項系數(shù),一次項系數(shù),常數(shù)項.【詳解】解:化成一元二次方程一般形式是4x2-1x+7=0,則它的二次項系數(shù)是4,一次項系數(shù)是-1.

故選:C.【點睛】本題主要考查了一元二次方程的一般形式,關鍵把握要確定一次項系數(shù),首先要把方程化成一般形式.4、D【分析】按照整式乘法、合并同類項、整式除法、冪的乘方依次化簡即可得到答案.【詳解】A.a2·a3=a5,故該項錯誤;B.3a2-a2=2a2,故該項錯誤;C.a8÷a2=a6,故該項錯誤;D.(a2)3=a6正確,故選:D.【點睛】此題考查整式的化簡計算,熟記整式乘法、合并同類項、整式除法、冪的乘方的計算方法即可正確解答.5、C【解析】分析:連接OB和AC交于點D,根據(jù)菱形及直角三角形的性質先求出AC的長及∠AOC的度數(shù),然后求出菱形ABCO及扇形AOC的面積,則由S菱形ABCO﹣S扇形AOC可得答案.詳解:連接OB和AC交于點D,如圖所示:∵圓的半徑為2,∴OB=OA=OC=2,又四邊形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:CD=,AC=2CD=2,∵sin∠COD=,∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=B×AC=×2×2=2,S扇形AOC=,則圖中陰影部分面積為S菱形ABCO﹣S扇形AOC=,故選C.點睛:本題考查扇形面積的計算及菱形的性質,解題關鍵是熟練掌握菱形的面積=a?b(a、b是兩條對角線的長度);扇形的面積=,有一定的難度.6、A【解析】試題分析:由題意知拋物線y=x2+2x+m﹣1與x軸有兩個交點,所以△=b2﹣4ac>0,即4﹣4m+4>0,解得m<2,故答案選A.考點:拋物線與x軸的交點.7、D【分析】先利用頂點式得到拋物線對稱軸為直線x=-1,再比較點A、B、C到直線x=-1的距離,然后根據(jù)二次函數(shù)的性質判斷函數(shù)值的大?。驹斀狻拷猓憾魏瘮?shù)的圖象的對稱軸為直線x=-1,a=-1<0,所以該函數(shù)開口向下,且到對稱軸距離越遠的點對應的函數(shù)值越小,A(﹣2,y1)距離直線x=-1的距離為1,B(﹣1,y2)距離直線x=-1的距離為0,C(4,y3)距離距離直線x=-1的距離為5.B點距離對稱軸最近,C點距離對稱軸最遠,所以,故選:D.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征.熟練掌握二次函數(shù)的性質是解決本題的關鍵.8、C【解析】試題分析:甲的作法正確:∵四邊形ABCD是平行四邊形,∴AD∥BC.∴∠DAC=∠ACN.∵MN是AC的垂直平分線,∴AO=CO.在△AOM和△CON中,∵∠MAO=∠NCO,AO=CO,∠AOM=∠CON,∴△AOM≌△CON(ASA),∴MO=NO.∴四邊形ANCM是平行四邊形.∵AC⊥MN,∴四邊形ANCM是菱形.乙的作法正確:如圖,∵AD∥BC,∴∠1=∠2,∠2=∠1.∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠2.∴∠1=∠3,∠5=∠1.∴AB=AF,AB=BE.∴AF=BE.∵AF∥BE,且AF=BE,∴四邊形ABEF是平行四邊形.∵AB=AF,∴平行四邊形ABEF是菱形.故選C.9、D【解析】根據(jù)配方的正確結果作出判斷:.故選D.10、D【分析】這個幾何體的側面是以底面圓周長為長、圓柱體的高為寬的矩形,根據(jù)矩形的面積公式計算即可.【詳解】根據(jù)三視圖可得幾何體為圓柱,圓柱體的側面積=底面圓的周長圓柱體的高=故答案為:D.【點睛】本題考查了圓柱體的側面積問題,掌握矩形的面積公式是解題的關鍵.二、填空題(每小題3分,共24分)11、【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果以及點(a,b)在第二象限的情況,再利用概率公式即可求得答案.【詳解】解:畫樹狀圖圖得:∵共有6種等可能的結果,點(a,b)在第二象限的有2種情況,∴點(a,b)在第二象限的概率為:.故答案為:.【點睛】本題考查的是利用公式計算某個事件發(fā)生的概率,注意找全所有可能出現(xiàn)的結果數(shù)作分母.在判斷某個事件A可能出現(xiàn)的結果數(shù)時,要注意審查關于事件A的說法,避免多數(shù)或少數(shù).12、(3,-4)【解析】分析:利用配方法得出二次函數(shù)頂點式形式,即可得出二次函數(shù)頂點坐標.詳解:∵y=x2﹣6x+5=(x﹣3)2﹣4,∴拋物線頂點坐標為(3,﹣4).故答案為(3,﹣4).點睛:此題考查了二次函數(shù)的性質,求拋物線的頂點坐標可以先配方化為頂點式,也可以利用頂點坐標公式()來找拋物線的頂點坐標.13、3000(1+x)2=1【分析】設增長率為x,則2010年綠化面積為3000(1+x)m2,則2021年的綠化面積為3000(1+x)(1+x)m2,然后可得方程.【詳解】解:設增長率為x,由題意得:

3000(1+x)2=1,

故答案為:3000(1+x)2=1.【點睛】本題考查了由實際問題抽象出一元二次方程,關鍵是正確理解題意,找出題目中的等量關系.14、1,,【分析】分別利用當DP∥AB時,當DP∥AC時,當∠CDP=∠A時,當∠BPD=∠BAC時求出相似三角形,進而得出結果.【詳解】BC=6,CD=2,

∴BD=4,①如圖,當DP∥AB時,△PDC∽△ABC,

∴,∴,∴DP=1;②如圖,當DP∥AC時,△PBD∽△ABC.

∴,∴,∴DP=;③如圖,當∠CDP=∠A時,∠DPC∽△ABC,∴,∴,∴DP=;④如圖,當∠BPD=∠BAC時,過點D的直線l與另一邊的交點在其延長線上,,不合題意。綜上所述,滿足條件的DP的值為1,,.【點睛】本題考查了相似變換,利用分類討論得出相似三角形是解題的關鍵,注意不要漏解.15、1【分析】直接把a的值代入得出2a2?a=4,進而將原式變形得出答案.【詳解】∵a是方程2x2=x+4的一個根,∴2a2﹣a=4,∴4a2﹣2a+1=2(2a2﹣a)+1=2×4+1=1.故答案為1.【點睛】此題主要考查了一元二次方程的解,正確將原式變形是解題關鍵.16、15【分析】直接利用特殊角的三角函數(shù)值求出答案.【詳解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【點睛】此題主要考查了特殊角的三角函數(shù)值,正確記憶相關特殊角的三角函數(shù)值是解題關鍵.17、【分析】先由題意得到,再設設,由勾股定理得到,解得x的值,最后將點C、G、A坐標代入二次函數(shù)表達式,即可得到答案.【詳解】解:點,反比例函數(shù)經(jīng)過點B,則點,則,,∴,設,則,,由勾股定理得:,解得:,故點,將點C、G、A坐標代入二次函數(shù)表達式得:,解得:,故答案為.【點睛】本題考查求二次函數(shù)解析式,解題的關鍵是熟練掌握待定系數(shù)法.18、【分析】根據(jù)根的判別式可得方程有實數(shù)根則,然后列出不等式計算即可.【詳解】根據(jù)題意得:解得:故答案為:【點睛】本題考查的是一元二次方程的根的判別式,根據(jù)一元二次方程的根的情況確定與0的關系是關鍵.三、解答題(共66分)19、(1)A的坐標為(,3);(2)x≥.【解析】試題分析:(1)聯(lián)立兩直線解析式,解方程組即可得到點A的坐標;(2)根據(jù)圖形,找出點A右邊的部分的x的取值范圍即可.試題解析:(1)由,解得:,∴A的坐標為(,3);(2)由圖象,得不等式2x≥-x+4的解集為:x≥.20、(1);(2)6;(3)【解析】(1)將M,N兩點代入求出b,c值,即可確定表達式;(2)令y=0求x的值,即可確定A、B兩點的坐標,求線段AB長,由三角形面積公式求解.(3)求出拋物線的對稱軸,確定M關于對稱軸的對稱點G的坐標,直線NG與對稱軸的交點即為所求P點,利用一次函數(shù)求出P點坐標.【詳解】解:將點,代入中得,,解得,,∴y與x之間的函數(shù)關系式為;(2)如圖,當y=0時,,∴x1=3,x2=-1,∴A(-1,0),B(3,0),∴AB=4,∴S△ABM=.即的面積是6.(3)如圖,拋物線的對稱軸為直線,點關于直線x=1的對稱點坐標為G(2,3),∴PM=PG,連MG交拋物線對稱軸于點P,此時NP+PM=NP+PG最小,即周長最短.設直線NG的表達式為y=mx+n,將N(-2,-5),G(2,3)代入得,,解得,,∴y=2m-1,∴P點坐標為(1,1).【點睛】本題考查拋物線與圖形的綜合題,涉及待定系數(shù)法求解析式,圖象的交點問題,利用對稱性解決線段和的最小值問題,利用函數(shù)觀點解決圖形問題是解答此題的關鍵.如圖,二次函數(shù)y=-x2+bx+c的圖像經(jīng)過M(0,3),N(-2,-5)兩點.21、(1)畫圖見解析;(2)畫圖見解析,C2的坐標為(﹣6,4).【解析】試題分析:利用關于點對稱的性質得出的坐標進而得出答案;

利用關于原點位似圖形的性質得出對應點位置進而得出答案.試題解析:(1)△A1BC1如圖所示.(2)△A2B2C2如圖所示,點C2的坐標為(-6,4).22、(1)y=﹣;y=﹣x+1(1)4.【解析】試題分析:(1)根據(jù)

S△ABO=,即,所以

,又因為圖象在二四象限,所以xy=﹣3即

k=-3,從而求出反比例函數(shù)解析式將

k=-3代入

,求出一次函數(shù)解析式;

(1)將兩個函數(shù)關系式

y=﹣和y=﹣x+1聯(lián)立,解這個方程組,可求出兩個交點A,C的坐標;(3)將x=0代入

y=﹣x+1中,求出D點坐標,根據(jù)△AOC的面積=△ADO的面積+△CDO的面積求解即可.解:(1)設A點坐標為(x,y),且x<0,y>0則S△ABO=?|OB|?|AB|=?(﹣x)?y=∴xy=﹣3又∵y=∴k=﹣3∴所求的兩個函數(shù)的解析式分別為y=﹣,y=﹣x+1(1)A、C兩點坐標滿足解得∴交點A為(﹣1,3),C為(3,﹣1)(3)由y=﹣x+1,令x=0,得y=1.∴直線y=﹣x+1與y軸的交點D的坐標為(0,1)點睛:本題考查了待定系數(shù)法求函數(shù)關系式,反比例函數(shù)與一次函數(shù)的綜合,割補法求不規(guī)則圖形的面積.將已知點的坐標代入解析式,求出未知系數(shù),從而求出函數(shù)解析式;將兩個函數(shù)關系式聯(lián)立,解所得到的方程組,可求出函數(shù)的交點坐標;求不規(guī)則圖形的面積,一般采用割或補的方式求解.23、(1)見解析;(2)見解析;(3)(?3,1)【分析】(1)根據(jù)A(0,2)、B(3,3)、C(2,1).在坐標系中找出連接即可;(2)根據(jù)把原三角形的三邊對應的縮小或放大一定的比例即可得到對應的相似圖形,在改變的過程中保持形狀不變(大小可變)即可得出答案.(3)利用(2)中圖象,直接得出答案.【詳解】(1)根據(jù)A(0,2)、B(3,3)、C(2,1).在坐標系中找出連接即可;(2)把原三角形的三邊對應的縮小或放大一定的比例即可得到對應的相似圖形。所畫圖形如下所示:它的三個對應頂點的坐標分別是:(?3,1)、(3,3)、(1,?1).(3)利用(2)中圖象,直接得出答案.故答案為:(?3,1)【點睛】此題考查坐標與圖形性質,位似變換,解題關鍵在于掌握作圖法則.24、(1),;(2)【分析】(1)由因式分解法即可得出答案;

(2)由正六邊形的性質和弧長公式即可得出結果.【詳解】(1)解:,,,∴,∴,.(2)解:六邊形是正六邊形,∴∴弧的長為.【點睛】此題考查正多邊形和圓,一元二次方程的解,弧長公式,熟練掌握正六邊形的性質和一元二次方程的解法是解題的關鍵.25、(1)證明見解析;(2)或;(3)【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論