




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第三角函數(shù)的公式歸納總結(jié)倒數(shù)關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關(guān)系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關(guān)系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
平常針對不同條件的常用的兩個公式
sin^2(α)+cos^2(α)=1
tanα_cotα=1
一個特殊公式
(sina+sinθ)_(sina-sinθ)=sin(a+θ)_sin(a-θ)
證明:(sina+sinθ)_(sina-sinθ)=2sin[(θ+a)/2]cos[(a-θ)/2]_2cos[(θ+a)/2]sin[(a-θ)/2]
=sin(a+θ)_sin(a-θ)
坡度公式
我們通常半坡面的鉛直高度h與水平高度l的比叫做坡度(也叫坡比),用字母i表示,
即i=h/l,坡度的一般形式寫成l:m形式,如i=1:5.如果把坡面與水平面的夾角記作
a(叫做坡角),那么i=h/l=tana.
銳角三角函數(shù)公式
正弦:sinα=∠α的對邊/∠α的斜邊
余弦:cosα=∠α的鄰邊/∠α的斜邊
正切:tanα=∠α的對邊/∠α的鄰邊
余切:cotα=∠α的鄰邊/∠α的對邊
二倍角公式
正弦
sin2A=2sinA·cosA
余弦
1.Cos2a=Cos^2(a)-Sin^2(a)
2.Cos2a=1-2Sin^2(a)
3.Cos2a=2Cos^2(a)-1
即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)
正切
tan2A=(2tanA)/(1-tan^2(A))
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a=tana·tan(π/3+a)·tan(π/3-a)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
和差化積
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
兩角和公式
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
積化和差
sinαsinβ=-[cos(α+β)-cos(α-β)]/2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
公式一:
設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與-α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式-和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)內(nèi)部資金在智慧城市能源管理系統(tǒng)中的應(yīng)用研究
- 互動式教學(xué)工具的營銷策略與教育內(nèi)容創(chuàng)新
- 抖音商戶直播設(shè)備故障應(yīng)急切換制度
- 全球視野下2025年跨文化交流能力在國際化教育中的核心地位報告
- 公交優(yōu)先發(fā)展戰(zhàn)略2025:城市交通擁堵治理中的公共交通與公共交通市場拓展研究報告
- CLK2-3-IN-1-生命科學(xué)試劑-MCE
- 陜西青年職業(yè)學(xué)院《口譯理論與實踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 新疆農(nóng)業(yè)職業(yè)技術(shù)學(xué)院《基礎(chǔ)泰語》2023-2024學(xué)年第一學(xué)期期末試卷
- 宣城職業(yè)技術(shù)學(xué)院《煙草文化》2023-2024學(xué)年第一學(xué)期期末試卷
- 公共衛(wèi)生應(yīng)急物資儲備體系建設(shè)2025年實施方案與信息化建設(shè)報告
- 2025年云南省文山州教育局直屬事業(yè)單位招聘27人歷年管理單位筆試遴選500模擬題附帶答案詳解
- GA/T 2150-2024出入境證件智能簽注設(shè)備
- 初中數(shù)學(xué)課后作業(yè)設(shè)計問題及優(yōu)化探討
- 檔案庫房安全
- 醫(yī)療機構(gòu)感染預(yù)防與控制基本制度解讀
- 9.2 中心對稱與中心對稱圖形 同步課件
- 人教部編版七年級上歷史第1課 一課一練同步訓(xùn)練(含答案)
- 機器學(xué)習(xí)周志華課件
- -小學(xué)英語人稱代詞與物主代詞講解課件(共58張課件).課件
- 長鑫存儲線上測試題
- 國家開放大學(xué)《園林樹木學(xué)》形考任務(wù)1-4參考答案
評論
0/150
提交評論