版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,點A、B、C在上,∠A=72°,則∠OBC的度數(shù)是()A.12° B.15° C.18° D.20°2.如圖是二次函數(shù)y=ax1+bx+c(a≠0)圖象的一部分,對稱軸是直線x=﹣1.關(guān)于下列結(jié)論:①ab<0;②b1﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤方程ax1+bx=0的兩個根為x1=0,x1=﹣4,其中正確的結(jié)論有()A.1個 B.3個 C.4個 D.5個3.下列各點在反比例函數(shù)y=-圖象上的是()A.(3,2) B.(2,3) C.(-3,-2) D.(-,2)4.如圖,線段AB兩個端點的坐標分別為A(6,6),B(8,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,則線段CD的長為()A.2 B. C.3 D.5.事件①:射擊運動員射擊一次,命中靶心;事件②:購買一張彩票,沒中獎,則()A.事件①是必然事件,事件②是隨機事件 B.事件①是隨機事件,事件②是必然事件C.事件①和②都是隨機事件 D.事件①和②都是必然事件6.如圖,△ABC中,DE∥BC,則下列等式中不成立的是()A. B. C. D.7.如圖,已知ΔABC~ΔADB,點D是AC的中點,AC=4,則AB的長為()A.2 B.4 C.22 D.8.已知正多邊形的邊心距與邊長的比為,則此正多邊形為()A.正三角形 B.正方形 C.正六邊形 D.正十二邊形9.下列事件中,是隨機事件的是()A.兩條直線被第三條直線所截,同位角相等B.任意一個四邊形的外角和等于360°C.早上太陽從西方升起D.平行四邊形是中心對稱圖形10.已知拋物線具有如下性質(zhì):拋物線上任意一點到定點的距離與到軸的距離相等.如圖點的坐標為,是拋物線上一動點,則周長的最小值是()A. B. C. D.二、填空題(每小題3分,共24分)11.在函數(shù)中,自變量的取值范圍是______.12.如圖,在菱形ABCD中,E是BC邊上的點,AE交BD于點F,若EC=2BE,則的值是.13.若關(guān)于x的方程=0是一元二次方程,則a=____.14.在比例尺為1:3000000的地圖上,測得AB兩地間的圖上距離為5厘米,則AB兩地間的實際距離是______千米.15.一個圓錐的母線長為10,高為6,則這個圓錐的側(cè)面積是_______.16.如圖,在一個正方形圍欄中均為地散步著許多米粒,正方形內(nèi)有一個圓(正方形的內(nèi)切圓)一只小雞在圍欄內(nèi)啄食,則小雞正在圓內(nèi)區(qū)域啄食的概率為________.17.如圖,AB是⊙O的直徑,點C是⊙O上的一點,若BC=3,AB=5,OD⊥BC于點D,則OD的長為_____.18.已知:,且y≠4,那么=______.三、解答題(共66分)19.(10分)取什么值時,關(guān)于的方程有兩個相等的實數(shù)根?求出這時方程的根.20.(6分)某汽車銷售公司去年12月份銷售新上市的一種新型低能耗汽車200輛,由于該型汽車的優(yōu)越的經(jīng)濟適用性,銷量快速上升,若該型汽車每輛的盈利為5萬元,則平均每天可售8輛,為了盡量減少庫存,汽車銷售公司決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),每輛汽車每降5000元,公司平均每天可多售出2輛,若汽車銷售公司每天要獲利48萬元,每輛車需降價多少?21.(6分)已知拋物線y=x2+mx﹣10與x軸的一個交點是(﹣,0),求m的值及另一個交點坐標.22.(8分)已知等邊△ABC的邊長為2,(1)如圖1,在邊BC上有一個動點P,在邊AC上有一個動點D,滿足∠APD=60°,求證:△ABP~△PCD(2)如圖2,若點P在射線BC上運動,點D在直線AC上,滿足∠APD=120°,當PC=1時,求AD的長(3)在(2)的條件下,將點D繞點C逆時針旋轉(zhuǎn)120°到點D',如圖3,求△D′AP的面積.23.(8分)如圖,⊙O的半徑為1,A,P,B,C是⊙O上的四個點,∠APC=∠CPB=60°.判斷△ABC的形狀,并證明你的結(jié)論;24.(8分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于點P(n,2),與x軸交于點A(-4,0),與y軸交于點C,PB⊥x軸于點B,點A與點B關(guān)于y軸對稱.(1)求一次函數(shù),反比例函數(shù)的表達式;(2)求證:點C為線段AP的中點;(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形.如果存在,說明理由并求出點D的坐標;如果不存在,說明理由.25.(10分)如圖,已知線段與點,若在線段上存在點,滿足,則稱點為線段的“限距點”.(1)如圖,在平面直角坐標系中,若點.①在中,是線段的“限距點”的是;②點是直線上一點,若點是線段的“限距點”,請求出點橫坐標的取值范圍.(2)在平面直角坐標系中,點,直線與軸交于點,與軸交于點.若線段上存在線段的“限距點”,請求出的取值范圍.26.(10分)如圖,直線y=﹣x+2與反比例函數(shù)y=的圖象在第二象限內(nèi)交于點A,過點A作AB⊥x軸于點B,OB=1.(1)求該反比例函數(shù)的表達式;(2)若點P是該反比例函數(shù)圖象上一點,且△PAB的面積為3,求點P的坐標.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)圓周角定理可得∠BOC的度數(shù),根據(jù)等腰三角形的性質(zhì)即可得答案.【詳解】∵點A、B、C在上,∠A=72°,∴∠BOC=2∠A=144°,∵OB=OC,∴∠OBC=∠OCB=(180°-∠BOC)=18°,故選:C.【點睛】本題考查圓周角定理及等腰三角形的性質(zhì),在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;熟練掌握圓周角定理是解題關(guān)鍵.2、C【分析】由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.【詳解】解:∵拋物線開口向下,∴a<0,∵,∴b=4a,ab>0,∴b﹣4a=0,∴①錯誤,④正確,∵拋物線與x軸交于﹣4,0處兩點,∴b1﹣4ac>0,方程ax1+bx=0的兩個根為x1=0,x1=﹣4,∴②⑤正確,∵當x=﹣3時y>0,即9a﹣3b+c>0,∴③正確,故正確的有②③④⑤.故選:C.【點睛】本題主要考查圖象與二次函數(shù)系數(shù)之間的關(guān)系,會利用對稱軸的范圍求1a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式以及特殊值的熟練運用3、D【分析】將各選項點的橫坐標代入,求出函數(shù)值,判斷是否等于縱坐標即可.【詳解】解:A.將x=3代入y=-中,解得y=-2,故(3,2)不在反比例函數(shù)y=-圖象上,故A不符合題意;B.將x=2代入y=-中,解得y=-3,故(2,3)不在反比例函數(shù)y=-圖象上,故B不符合題意;C.將x=-3代入y=-中,解得y=2,故(-3,-2)不在反比例函數(shù)y=-圖象上,故C不符合題意;D.將x=-代入y=-中,解得y=2,故(-,2)在反比例函數(shù)y=-圖象上,故D符合題意;故選:D.【點睛】此題考查的是判斷一個點是否在反比例函數(shù)圖象上,解決此題的關(guān)鍵是將點的橫坐標代入,求出函數(shù)值,判斷是否等于縱坐標即可.4、D【分析】直接利用A,B點坐標得出AB的長,再利用位似圖形的性質(zhì)得出CD的長.【詳解】解:∵A(6,6),B(8,2),∴AB==2,∵以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,∴線段CD的長為:×2=.故選:D.【點睛】本題考查了位似圖形,解題的關(guān)鍵是熟悉位似圖形的性質(zhì).5、C【分析】根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.【詳解】解:射擊運動員射擊一次,命中靶心是隨機事件;購買一張彩票,沒中獎是隨機事件,故選C.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.6、B【分析】根據(jù)兩直線平行,對應(yīng)線段成比例即可解答.【詳解】∵DE∥BC,∴△ADE∽△ABC,=,∴,∴選項A,C,D成立,故選:B.【點睛】本題考查平行線分線段成比例的知識,解題的關(guān)鍵是熟練掌握平行線分線段成比例定理.7、C【分析】根據(jù)相似三角形的性質(zhì)列出比例式求解即可.【詳解】解:∵點D是AC的中點,AC=4,,
∴AD=2,
∵ΔABC~ΔADB,
∴AD∴2∴AB=22,
故選C【點睛】本題考查了相似三角形的性質(zhì),能夠根據(jù)相似三角形列出比例式是解答本題的關(guān)鍵,難度不大.8、B【分析】邊心距與邊長的比為,即邊心距等于邊長的一半,進而可知半徑與邊心距的夾角是15度.可求出中心角的度數(shù),從而得到正多邊形的邊數(shù).【詳解】如圖,圓A是正多邊形的內(nèi)切圓;∠ACD=∠ABD=90°,AC=AB,CD=BD是邊長的一半,當正多邊形的邊心距與邊長的比為,即如圖有AB=BD,則△ABD是等腰直角三角形,∠BAD=15°,∠CAB=90°,即正多邊形的中心角是90度,所以它的邊數(shù)=360÷90=1.故選:B.【點睛】本題利用了正多邊形與它的內(nèi)切圓的關(guān)系求解,轉(zhuǎn)化為解直角三角形的計算.9、A【分析】根據(jù)隨機事件的概念對每一事件進行分析.【詳解】選項A,只有當兩條直線為平行線時,同位角才相等,故不確定為隨機事件.選項B,不可能事件.選項C,不可能事件選項D,必然事件.故選A【點睛】本題考查了隨機事件的概念.10、C【分析】作過作軸于點,過點作軸于點,交拋物線于點,由結(jié)合,結(jié)合點到直線之間垂線段最短及MF為定值,即可得出當點P運動到點P′時,△PMF周長取最小值,再由點、的坐標即可得出、的長度,進而得出周長的最小值.【詳解】解:作過作軸于點,由題意可知:,∴周長=,又∵點到直線之間垂線段最短,∴當、、三點共線時最小,此時周長取最小值,過點作軸于點,交拋物線于點,此時周長最小值,、,,,周長的最小值.故選:.【點睛】本題考查了二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標特征以及點到直線的距離,根據(jù)點到直線之間垂線段最短找出△PMF周長的取最小值時點P的位置是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】根據(jù)分式有意義,分母不等于0列式計算即可得解.【詳解】由題意得,x+1≠0,解得x≠?1.故答案為x≠?1.【點睛】本題考查了函數(shù)自變量的范圍,一般從三個方面考慮:(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);(1)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當函數(shù)表達式是二次根式時,被開方數(shù)非負.12、【解析】EC=2BE,得,由于AD//BC,得13、﹣1.【分析】根據(jù)一元二次方程的定義得到由此可以求得a的值.【詳解】解:∵關(guān)于x的方程(a﹣1)xa2+1﹣7=0是一元二次方程,∴a2+1=2,且a﹣1≠0,解得,a=﹣1.故答案為﹣1.【點睛】本題考查了一元二次方程的概念.只有一個未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).14、150【分析】設(shè)實際距離為x千米,根據(jù)比例尺=圖上距離:實際距離計算即可得答案.【詳解】設(shè)實際距離為x千米,5厘米=0.00005千米,∵比例尺為1:3000000,圖上距離為5cm,∴1:3000000=0.00005:x,解得:x=150(千米),故答案為:150【點睛】本題考查了比例尺的定義,能夠根據(jù)比例尺由圖上距離正確計算實際距離是解題關(guān)鍵,注意單位的換算.15、80π【分析】首先根據(jù)勾股定理求得圓錐的底面半徑,從而得到底面周長,然后利用扇形的面積公式即可求解.【詳解】解:圓錐的底面半徑是:=8,圓錐的底面周長是:2×8π=16π,
則×16π×10=80π.故答案為:80π.【點睛】本題考查了圓錐的計算,正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.16、【分析】設(shè)正方形的邊長為a,再分別計算出正方形與圓的面積,計算出其比值即可.【詳解】解:設(shè)正方形的邊長為a,則S正方形=a2,因為圓的半徑為,所以S圓=π()2=,所以“小雞正在圓圈內(nèi)”啄食的概率為:故答案為:【點睛】本題考查幾何概率,掌握正方形面積公式正確計算是解題關(guān)鍵.17、1【分析】先利用圓周角定理得到∠ACB=90°,則可根據(jù)勾股定理計算出AC=4,再根據(jù)垂徑定理得到BD=CD,則可判斷OD為△ABC的中位線,然后根據(jù)三角形中位線性質(zhì)求解.【詳解】∵AB是⊙O的直徑,∴∠ACB=90°,∴AC==4,∵OD⊥BC,∴BD=CD,而OB=OA,∴OD為△ABC的中位線,∴OD=AC=×4=1.故答案為:1.【點睛】本題考查了圓周角定理的推論及垂徑定理,掌握“直徑所對的圓周角是直角”,及垂徑定理是關(guān)鍵.18、【分析】由分式的性質(zhì)和等比性質(zhì),即可得到答案.【詳解】解:∵,∴,由等比性質(zhì),得:;故答案為:.【點睛】本題考查了比例的性質(zhì),以及分式的性質(zhì),解題的關(guān)鍵是熟練掌握等比性質(zhì).三、解答題(共66分)19、k=2或10時,當k=2時,x1=x2=,當k=10時,x1=x2=【分析】根據(jù)題意,得判別式△=[-(k+2)]2-4×4×(k-1)=0,解此一元二次方程即可求得k的值;然后代入k,利用直接開平方法,即可求得這時方程的根.【詳解】解:∵關(guān)于x的方程4x2-(k+2)x+k-1=0有兩個相等的實數(shù)根,∴△=[-(k+2)]2-4×4×(k-1)=k2-12k+20=0,解得:k1=2,k2=10∴k=2或10時,關(guān)于x的方程4x2-(k+2)x+k-1=0有兩個相等的實數(shù)根.當k=2時,原方程為:4x2-4x+1=0,即(2x-1)2=0,解得:x1=x2=;當k=10時,原方程為:4x2-12x+9=0,即(2x-3)2=0,解得:x1=x2=;【點睛】此題考查了一元二次方程根的判別式與一元二次方程的解法.此題難度不大,解題的關(guān)鍵是掌握一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.20、每輛車需降價2萬元【分析】設(shè)每輛車需降價萬元,根據(jù)每輛汽車每降5000元,公司平均每天可多售出2輛可用x表示出日銷售量,根據(jù)每天要獲利48萬元,利用利潤=日銷售量×單車利潤列方程可求出x的值,根據(jù)盡量減少庫存即可得答案.【詳解】設(shè)每輛車需降價萬元,則日銷售量為輛,依題意,得:,解得:,,∵要盡快減少庫存,∴.答:每輛車需降價2萬元.【點睛】此題主要考查了一元二次方程的應(yīng)用,找到關(guān)鍵描述語,得出等量關(guān)系是解題關(guān)鍵.21、m=﹣;另一個交點坐標(2,0)【分析】首先將點(﹣,0)的坐標代入拋物線的解析式中,即可求得m的值,再令拋物線中y=0,可得出關(guān)于x的一元二次方程,即可求得拋物線與x軸的另一交點的坐標.【詳解】解:根據(jù)題意得,5﹣m﹣10=0,所以m=﹣;得拋物線的解析式為y=x2﹣x﹣10,∵x2﹣x﹣10=0,解得x1=﹣,x2=2,∴拋物線與x軸的另一個交點坐標(2,0).故答案為:m=﹣;另一個交點坐標(2,0).【點睛】本題考查了拋物線與軸的交點:從二次函數(shù)的交點式(a,b,c是常數(shù),a≠0)中可直接得出拋物線與軸的交點坐標,.22、(1)見解析;(2);(3)【分析】(1)先利用三角形的內(nèi)角和得出∠BAP+∠APB=120°,再用平角得出∠APB+∠CPD=120°,進而得出∠BAP=∠CPD,即可得出結(jié)論;(2)先構(gòu)造出含30°角的直角三角形,求出PE,再用勾股定理求出PE,進而求出AP,再判斷出△ACP∽∠APD,得出比例式即可得出結(jié)論;(3)先求出CD,進而得出CD',再構(gòu)造出直角三角形求出D'H,進而得出D'G,再求出AM,最后用面積差即可得出結(jié)論.【詳解】解:(1)∵△ABC是等邊三角形,∴∠B=∠C=60°,在△ABP中,∠B+∠APB+∠BAP=180°,∴∠BAP+∠APB=120°,∵∠APB+∠CPD=180°﹣∠APD=120°,∴∠BAP=∠CPD,∴△ABP∽△PCD;(2)如圖2,過點P作PE⊥AC于E,∴∠AEP=90°,∵△ABC是等邊三角形,∴AC=2,∠ACB=60°,∴∠PCE=60°,在Rt△CPE中,CP=1,∠CPE=90°﹣∠PCE=30°,∴CE=CP=,根據(jù)勾股定理得,PE=,在Rt△APE中,AE=AC+CE=2+=,根據(jù)勾股定理得,AP2=AE2+PE2=7,∵∠ACB=60°,∴∠ACP=120°=∠APD,∵∠CAP=∠PAD,∴△ACP∽△APD,∴,∴AD==;(3)如圖3,由(2)知,AD=,∵AC=2,∴CD=AD﹣AC=,由旋轉(zhuǎn)知,∠DCD'=120°,CD'=CD=,∵∠DCP=60°,∴∠ACD'=∠DCP=60°,過點D'作D'H⊥CP于H,在Rt△CHD'中,CH=CD'=,根據(jù)勾股定理得,D'H=CH=,過點D'作D'G⊥AC于G,∵∠ACD'=∠PCD',∴D'G=D'H=(角平分線定理),∴S四邊形ACPD'=S△ACD'+S△PCD'=AC?D'G+CP?DH'=×2×+×1×=,過點A作AM⊥BC于M,∵AB=AC,∴BM=BC=1,在Rt△ABM中,根據(jù)勾股定理得,AM=BM=,∴S△ACP=CP?AM=×1×=,∴S△D'AP=S四邊形ACPD'﹣S△ACP=﹣=.【點睛】此題主要考查四邊形綜合,解題的關(guān)鍵是熟知等邊三角形的性質(zhì)、旋轉(zhuǎn)的特點及相似三角形的判定與性質(zhì)、勾股定理的應(yīng)用.23、見解析.【分析】利用圓周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,從而可判斷△ABC的形狀;【詳解】解:△ABC是等邊三角形.證明如下:在⊙O中,∵∠BAC與∠CPB是弧BC所對的圓周角,∠ABC與∠APC是弧AC所對的圓周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°=∠ACB,∴△ABC為等邊三角形.【點睛】本題考查了圓周角定理、等邊三角形的判定,解題的關(guān)鍵是掌握圓周角定理,正確求出∠ABC=∠BAC=60°.24、(1)y=x+1;y=(2)證明見解析;(3)存在,D(8,1).【分析】(1)由點A與點B關(guān)于y軸對稱,可得AO=BO,再由A的坐標求得B點的坐標,從而求得點P的坐標,將P坐標代入反比例解析式求出m的值,即可確定出反比例解析式,將A與P坐標代入一次函數(shù)解析式求出k與b的值,確定出一次函數(shù)解析式;(2)由AO=BO,PB∥CO,即可證得結(jié)論;(3)假設(shè)存在這樣的D點,使四邊形BCPD為菱形,過點C作CD平行于x軸,交PB于點E,交反比例函數(shù)y=的圖象于點D,分別連結(jié)PD、BD,如圖所示,即可得點D(8,1),BP⊥CD,易證PB與CD互相垂直平分,即可得四邊形BCPD為菱形,從而得點D的坐標.【詳解】解:(1)∵點A與點B關(guān)于y軸對稱,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=得m=8,∴反比例函數(shù)的解析式:y=把A(-4,0),P(4,2)代入y=kx+b得:,解得:,所以一次函數(shù)的解析式:y=x+1;(2)∵點A與點B關(guān)于y軸對稱,∴OA=OB∵PB丄x軸于點B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴點C為線段AP的中點.(3)存在點D,使四邊形BCPD為菱形∵點C為線段AP的中點,∴BC=,∴BC和PC是菱形的兩條邊由y=x+1,可得點C(0,1),過點C作CD平行于x軸,交PB于點E,交反比例函數(shù)y=的圖象于點D,分別連結(jié)PD、BD,∴點D(8,1),BP⊥CD∴PE=BE=1,∴CE=DE=4,∴PB與CD互相垂直平分,∴四邊形BCPD為菱形.∴點D(8,1)即為所求.25、(1)①;②或;(2).【分析】(1)①已知AB=2,根據(jù)勾股定理,結(jié)合兩點之間的距離公式,即可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 水電維修保養(yǎng)合同范例
- 合同范例 附件
- 舞蹈機構(gòu)入伙合同范例
- 拆遷中標合同范例
- 企業(yè)超市合同范例
- 出售首層廠房合同范例
- 項目追加合同范例
- 戶外家具合同范例
- 轉(zhuǎn)手買賣合同范例
- 監(jiān)控材料采購安裝合同范例
- 屋面防水修繕施工方案
- 室內(nèi)質(zhì)控月總結(jié)報告表
- 青島農(nóng)業(yè)大學(xué)影視藝術(shù)概論期末復(fù)習(xí)題導(dǎo)學(xué)資料
- 生產(chǎn)安全事故應(yīng)急資源調(diào)查報告(參考模板)
- 生物信息學(xué)在微生物研究領(lǐng)域中的應(yīng)用
- 分布式光伏發(fā)電項目并網(wǎng)驗收意見單
- 看聽學(xué)一冊單詞大全
- 網(wǎng)站隱私政策模板
- YY∕T 1831-2021 梅毒螺旋體抗體檢測試劑盒(免疫層析法)
- 滬教版生物科學(xué)八年級上冊重點知識點總結(jié)
- 消弧產(chǎn)品規(guī)格實用標準化規(guī)定
評論
0/150
提交評論