河北省邯鄲市館陶縣魏僧寨中學2022-2023學年九年級數(shù)學第一學期期末達標檢測模擬試題含解析_第1頁
河北省邯鄲市館陶縣魏僧寨中學2022-2023學年九年級數(shù)學第一學期期末達標檢測模擬試題含解析_第2頁
河北省邯鄲市館陶縣魏僧寨中學2022-2023學年九年級數(shù)學第一學期期末達標檢測模擬試題含解析_第3頁
河北省邯鄲市館陶縣魏僧寨中學2022-2023學年九年級數(shù)學第一學期期末達標檢測模擬試題含解析_第4頁
河北省邯鄲市館陶縣魏僧寨中學2022-2023學年九年級數(shù)學第一學期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.已知反比例函數(shù),下列結(jié)論中不正確的是()A.圖象必經(jīng)過點 B.隨的增大而增大C.圖象在第二,四象限內(nèi) D.若,則2.已知關于的方程有一個根是,則的值是()A.-1 B.0 C. D.13.如圖,A、D是⊙O上的兩點,BC是直徑,若∠D=40°,則∠ACO=()A.80° B.70° C.60° D.50°4.已知的直徑是8,直線與有兩個交點,則圓心到直線的距離滿足()A. B. C. D.5.已知函數(shù)y=(k-1)x2-4x+4的圖象與x軸只有一個交點,則k的取值范圍是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或16.一元二次方程的根的情況是()A.有兩個相等的實根 B.有兩個不等的實根 C.只有一個實根 D.無實數(shù)根7.已知反比例函數(shù)的圖象經(jīng)過點(m,3m),則此反比例函數(shù)的圖象在()A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限8.下列事件中為必然事件的是()A.打開電視機,正在播放茂名新聞 B.早晨的太陽從東方升起C.隨機擲一枚硬幣,落地后正面朝上 D.下雨后,天空出現(xiàn)彩虹9.如圖,正六邊形ABCDEF的半徑OA=OD=2,則點B關于原點O的對稱點坐標為()A.(1,﹣) B.(﹣1,) C.(﹣,1) D.(,﹣1)10.與y=2(x﹣1)2+3形狀相同的拋物線解析式為()A.y=1+x2 B.y=(2x+1)2 C.y=(x﹣1)2 D.y=2x211.已知,則的值是()A. B.2 C. D.12.如圖,在平面直角坐標中,正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,點A,B,E在x軸上,若正方形BEFG的邊長為6,則C點坐標為()A.(3,2) B.(3,1) C.(2,2) D.(4,2)二、填空題(每題4分,共24分)13.計算:2sin30°+tan45°=_____.14.如圖,半徑為的⊙O與邊長為8的等邊三角形ABC的兩邊AB、BC都相切,連接OC,則sin∠OCB=___________.15.如圖所示,已知中,,邊上的高,為上一點,,交于點,交于點,設點到邊的距離為.則的面積關于的函數(shù)圖象大致為__________.16.如圖,在平面直角坐標系中,已知經(jīng)過點,且點O為坐標原點,點C在y軸上,點E在x軸上,A(-3,2),則__________.17.已知m是方程x2﹣3x﹣1=0的一個根,則代數(shù)式2m2﹣6m﹣7的值等于_____.18.一元二次方程有一個根為,二次項系數(shù)為1,且一次項系數(shù)和常數(shù)項都是非0的有理數(shù),這個方程可以是_________.三、解答題(共78分)19.(8分)如圖,反比例函數(shù)的圖象的一支在平面直角坐標系中的位置如圖所示,根據(jù)圖象回答下列問題:(1)圖象的另一支在第________象限;在每個象限內(nèi),隨的增大而________,常數(shù)的取值范圍是________;(2)若此反比例函數(shù)的圖象經(jīng)過點,求的值.20.(8分)如圖,在中,,點為邊的中點,請按下列要求作圖,并解決問題:(1)作點關于的對稱點;(2)在(1)的條件下,將繞點順時針旋轉(zhuǎn),①面出旋轉(zhuǎn)后的(其中、、三點旋轉(zhuǎn)后的對應點分別是點、、);②若,則________.(用含的式子表示)21.(8分)如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分別是邊BC、AC上的兩個動點,且DE=4,P是DE的中點,連接PA,PB,則PA+PB的最小值為_____.22.(10分)如圖,△OAB中,OA=OB=10cm,∠AOB=80°,以點O為圓心,半徑為6cm的優(yōu)弧分別交OA、OB于點M、N.(1)點P在右半弧上(∠BOP是銳角),將OP繞點O逆時針旋轉(zhuǎn)80°得OP′.求證:AP=BP′;(2)點T在左半弧上,若AT與圓弧相切,求AT的長.(3)Q為優(yōu)弧上一點,當△AOQ面積最大時,請直接寫出∠BOQ的度數(shù)為.23.(10分)如圖,在平面直角坐標系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,A點在原點的左側(cè),拋物線的對稱軸x=1,與y軸交于C(0,﹣3)點,點P是直線BC下方的拋物線上一動點.(1)求這個二次函數(shù)的解析式及A、B點的坐標.(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形;若存在,請求出此時點P的坐標;若不存在,請說明理由.(3)當點P運動到什么位置時,四邊形ABPC的面積最大;求出此時P點的坐標和四邊形ABPC的最大面積.24.(10分)如圖1,的余切值為2,,點D是線段上的一動點(點D不與點A、B重合),以點D為頂點的正方形的另兩個頂點E、F都在射線上,且點F在點E的右側(cè),聯(lián)結(jié),并延長,交射線于點P.(1)點D在運動時,下列的線段和角中,________是始終保持不變的量(填序號);①;②;③;④;⑤;⑥;(2)設正方形的邊長為x,線段的長為y,求y與x之間的函數(shù)關系式,并寫出定義域;(3)如果與相似,但面積不相等,求此時正方形的邊長.25.(12分)在平面直角坐標系中,已知,.(1)如圖1,求的值.(2)把繞著點順時針旋轉(zhuǎn),點、旋轉(zhuǎn)后對應的點分別為、.①當恰好落在的延長線上時,如圖2,求出點、的坐標.②若點是的中點,點是線段上的動點,如圖3,在旋轉(zhuǎn)過程中,請直接寫出線段長的取值范圍.26.如圖,四邊形OABC是矩形,A、C分別在y軸、x軸上,且OA=6cm,OC=8cm,點P從點A開始以2cm/s的速度向B運動,點Q從點B開始以1cm/s的速度向C運動,設運動時間為t.(1)如圖(1),當t為何值時,△BPQ的面積為4cm2?(2)當t為何值時,以B、P、Q為頂點的三角形與△ABC相似?(3)如圖(2),在運動過程中的某一時刻,反比例函數(shù)y=的圖象恰好同時經(jīng)過P、Q兩點,求這個反比例函數(shù)的解析式.

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)反比例函數(shù)圖象上點的坐標特點:橫縱坐標之積=k,可以判斷出A的正誤;根據(jù)反比例函數(shù)的性質(zhì):k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大可判斷出B、C、D的正誤.【詳解】A、反比例函數(shù),所過的點的橫縱坐標之積=?6,此結(jié)論正確,故此選項不符合題意;B、反比例函數(shù),在每一象限內(nèi)y隨x的增大而增大,此結(jié)論不正確,故此選項符合題意;C、反比例函數(shù),圖象在第二、四象限內(nèi),此結(jié)論正確,故此選項不合題意;D、反比例函數(shù),當x>1時圖象在第四象限,y隨x的增大而增大,故x>1時,?6<y<0;故選:B.【點睛】此題主要考查了反比例函數(shù)的性質(zhì),以及反比例函數(shù)圖象上點的坐標特點,關鍵是熟練掌握反比例函數(shù)的性質(zhì):(1)反比例函數(shù)y=(k≠0)的圖象是雙曲線;(2)當k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內(nèi)y隨x的增大而減?。唬?)當k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大.2、A【分析】把b代入方程得到關于a,b的式子進行求解即可;【詳解】把b代入中,得到,∵,∴兩邊同時除以b可得,∴.故答案選A.【點睛】本題主要考查了一元二次方程的解,準確利用等式的性質(zhì)是解題的關鍵.3、D【分析】根據(jù)圓周角的性質(zhì)可得∠ABC=∠D,再根據(jù)直徑所對圓周角是直角,即可得出∠ACO的度數(shù).【詳解】∵∠D=40°,∴∠AOC=2∠D=80°,∵OA=OC,∴∠ACO=∠OAC=(180°﹣∠AOC)=50°,故選:D.【點睛】本題考查圓周角的性質(zhì),關鍵在于熟練掌握圓周角的性質(zhì),特別是直徑所對的圓周角是直角.4、B【分析】先求出圓的半徑,再根據(jù)直線與圓的位置關系與d和r的大小關系即可得出結(jié)論.【詳解】解:∵的直徑是8∴的半徑是4∵直線與有兩個交點∴0≤d<4(注:當直線過圓心O時,d=0)故選B.【點睛】此題考查的是根據(jù)圓與直線的位置關系求圓心到直線的距離的取值范圍,掌握直線與圓的位置關系與d和r的大小關系是解決此題的關鍵.5、D【分析】當k+1=0時,函數(shù)為一次函數(shù)必與x軸有一個交點;當k+1≠0時,函數(shù)為二次函數(shù),根據(jù)條件可知其判別式為0,可求得k的值.【詳解】當k-1=0,即k=1時,函數(shù)為y=-4x+4,與x軸只有一個交點;當k-1≠0,即k≠1時,由函數(shù)與x軸只有一個交點可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,綜上可知k的值為1或2,故選D.【點睛】本題主要考查函數(shù)與x軸的交點,掌握二次函數(shù)與x軸只有一個交點的條件是解題的關鍵,解決本題時注意考慮一次函數(shù)和二次函數(shù)兩種情況.6、D【分析】先求出的值,再進行判斷即可得出答案.【詳解】解:一元二次方程x2+2020=0中,

=0-4×1×2020<0,

故原方程無實數(shù)根.

故選:D.【點睛】本題考查了根的判別式,一元二次方程根的情況與判別式△的關系:(1)>0?方程有兩個不相等的實數(shù)根;(2)=0?方程有兩個相等的實數(shù)根;(3)<0?方程沒有實數(shù)根.7、B【詳解】解:將點(m,3m)代入反比例函數(shù)得,k=m?3m=3m2>0;故函數(shù)在第一、三象限,故選B.8、B【解析】分析:根據(jù)必然事件、不可能事件、隨機事件的概念可區(qū)別各類事件:A、打開電視機,正在播放茂名新聞,可能發(fā)生,也可能不發(fā)生,是隨機事件,故本選項錯誤;B、早晨的太陽從東方升起,是必然事件,故本選項正確;C、隨機擲一枚硬幣,落地后可能正面朝上,也可能背面朝上,故本選項錯誤;D、下雨后,天空出現(xiàn)彩虹,可能發(fā)生,也可能不發(fā)生,故本選項錯誤.故選B.9、D【分析】根據(jù)正六邊形的性質(zhì),解直角三角形即可得到結(jié)論.【詳解】解:連接OB,∵正六邊形ABCDEF的半徑OA=OD=2,∴OB=OA=AB=6,∠ABO=∠60°,∴∠OBH=60°,∴BH=OB=1,OH=OB=,∴B(﹣,1),∴點B關于原點O的對稱點坐標為(,﹣1).故選:D.【點睛】本題考查了正六邊形的性質(zhì)和解直角三角形的相關知識,解決本題的關鍵是熟練掌握正六邊形的性質(zhì),能夠得到相應角的度數(shù).10、D【分析】拋物線的形狀只是與a有關,a相等,形狀就相同.【詳解】y=1(x﹣1)1+3中,a=1.故選D.【點睛】本題考查了拋物線的形狀與a的關系,比較簡單.11、C【分析】設x=5k(k≠0),y=2k(k≠0),代入求值即可.【詳解】解:∵∴x=5k(k≠0),y=2k(k≠0)∴故選:C.【點睛】本題考查分式的性質(zhì)及化簡求值,根據(jù)題意,正確計算是解題關鍵.12、A【詳解】∵正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C點坐標為:(3,2),故選A.二、填空題(每題4分,共24分)13、1.【分析】根據(jù)解特殊角的三角函數(shù)值即可解答.【詳解】原式=1×+1=1.【點睛】本題考查特殊角的三角函數(shù)值,解題的關鍵是牢記這些特殊三角函數(shù)值.14、【分析】根據(jù)切線長定理得出,解直角三角形求得,即可求得,然后解Rt△OCD即可求得的值.【詳解】解:連接,作于,與等邊三角形的兩邊、都相切,,,,,在Rt△OCD中,.故答案為:.【點睛】本題考查了切線的性質(zhì),等邊三角形的性質(zhì),解直角三角形等,作出輔助線構(gòu)建直角三角形是解題的關鍵.15、拋物線y=-x2+6x.(0<x<6)的部分.【分析】可過點A向BC作AH⊥BC于點H,所以根據(jù)相似三角形的性質(zhì)可求出EF,進而求出函數(shù)關系式,由此即可求出答案.【詳解】解:過點A向BC作AH⊥BC于點H,∵∴△AEF∽△ABC∴即,∴y=×2(6-x)x=-x2+6x.(0<x<6)∴該函數(shù)圖象是拋物線y=-x2+6x.(0<x<6)的部分.故答案為:拋物線y=-x2+6x.(0<x<6)的部分.【點睛】此題考查相似三角形的判定和性質(zhì),根據(jù)幾何圖形的性質(zhì)確定函數(shù)的圖象能力.要能根據(jù)函數(shù)解析式及其自變量的取值范圍分析得出所對應的函數(shù)圖像的類型和所需要的條件,結(jié)合實際意義分析得解.16、【解析】分別過A點作x軸和y軸的垂線,連接EC,由∠COE=90°,根據(jù)圓周角定理可得:EC是⊙A的直徑、,由A點坐標及垂徑定理可求出OE和OC,解直角三角形即可求得.【詳解】解:如圖,過A作AM⊥x軸于M,AN⊥y軸于N,連接EC,∵∠COE=90°,∴EC是⊙A的直徑,∵A(?3,2),∴OM=3,ON=2,∵AM⊥x軸,AN⊥y軸,∴M為OE中點,N為OC中點,∴OE=2OM=6,OC=2ON=4,∴=.【點睛】本題主要考查了同弧所對的圓周角相等、垂徑定理和銳角三角函數(shù)定義,熟練掌握定理是解本題的關鍵.17、﹣1.【分析】根據(jù)一元二次方程的解的概念可得關于m的方程,變形后整體代入所求式子即得答案.【詳解】解:∵m是方程x2﹣3x﹣1=0的一個根,∴m2﹣3m﹣1=0,∴m2﹣3m=1,∴2m2﹣6m﹣7=2(m2﹣3m)﹣7=2×1﹣7=﹣1.故答案為:﹣1.【點睛】本題考查了一元二次方程的解的概念和代數(shù)式求值,熟練掌握整體代入的數(shù)學思想和一元二次方程的解的概念是解題關鍵.18、【分析】根據(jù)有理系數(shù)一元二次方程若有一根為,則必有另一根為求解即可.【詳解】根據(jù)題意,方程的另一個根為,∴這個方程可以是:,即:,故答案是:,【點睛】本題考查了一元二次方程根與系數(shù)的關系,正確理解“有理系數(shù)一元二次方程若有一根為,則必有另一根為”是解題的關鍵.三、解答題(共78分)19、(1)故答案為四;增大;;(2).【分析】(1)根據(jù)反比例函數(shù)的圖象特點即可得;(2)將點代入反比例函數(shù)的解析式即可得.【詳解】(1)由反比例函數(shù)的圖象特點得:圖象的另一支在第四象限;在每個象限內(nèi),y隨x的增大而增大由反比例函數(shù)的性質(zhì)可得:,解得故答案為:四;增大;;(2)把代入得到:,則故m的值為.【點睛】本題考查了反比例函數(shù)的圖象特點、反比例函數(shù)的性質(zhì),熟記函數(shù)的圖象特點和性質(zhì)是解題關鍵.20、(1)見解析;(2)①見解析,②90°?α【分析】(1)利用網(wǎng)格特點和軸對稱的性質(zhì)畫出O點;(2)①利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)分別畫出A、B、C三點對應點點E、F、G即可;②先確定∠OCB=∠DCB=α,再利用OB=OC和三角形內(nèi)角和得到∠BOC=180°?2α,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠COG=90°,則∠BOG=270°?2α,于是可計算出∠OGB=α?45°,然后計算∠OGC?∠OGB即可.【詳解】(1)如圖,點O為所作;(2)①如圖,△EFG為所作;②∵點O與點D關于BC對稱,∴∠OCB=∠DCB=α,∵OB=OC,∴∠OBC=∠OCB=α,∴∠BOC=180°?2α,∵∠COG=90°,∴∠BOG=180°?2α+90°=270°?2α,∵OB=OG,∴∠OGB=[180°?(270°?2α)]=α?45°,∴∠BGC=∠OGC?∠OGB=45°?(α?45°)=90°?α.故答案為90°?α.【點睛】本題考查了作圖?旋轉(zhuǎn)變換:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,對應角都相等都等于旋轉(zhuǎn)角,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉(zhuǎn)后的圖形.21、【分析】連接PC,則PC=DE=2,在CB上截取CM=0.25,得出△CPM∽△CBP,即可得出結(jié)果.【詳解】解:連接PC,則PC=DE=2,∴P在以C為圓心,2為半徑的圓弧上運動,在CB上截取CM=0.25,連接MP,∴,∴,∵∠MCP=∠PCB,∴△CPM∽△CBP,∴PM=PB,∴PA+PB=PA+PM,∴當P、M、A共線時,PA+PB最小,即.【點睛】本題考查了最短路徑問題,相似三角形的判定與性質(zhì),正確做出輔助線是解題的關鍵.22、(1)證明見解析;(2)AT=8;(3)170°或者10°.【分析】(1)欲證明AP=BP′,只要證明△AOP≌△BOP′即可;

(2)在Rt△ATO中,利用勾股定理計算即可;(3)當OQ⊥OA時,△AOQ面積最大,且左右兩半弧上各存在一點分別求出即可.【詳解】解:(1)證明:∵∠AOB=∠POP′=80°∴∠AOB+∠BOP=∠POP′+∠BOP即∠AOP=∠BOP′在△AOP與△BOP′中,∴△AOP≌△BOP′(SAS),∴AP=BP′;(2)∵AT與弧相切,連結(jié)OT,∴OT⊥AT在Rt△AOT中,根據(jù)勾股定理,AT=∵OA=10,OT=6,∴AT=8;(3)解:如圖,當OQ⊥OA時,△AOQ的面積最大;

理由是:當Q點在優(yōu)弧MN左側(cè)上,∵OQ⊥OA,

∴QO是△AOQ中最長的高,則△AOQ的面積最大,

∴∠BOQ=∠AOQ+∠AOB=90°+80°=170°,

當Q點在優(yōu)弧MN右側(cè)上,

∵OQ⊥OA,

∴QO是△AOQ中最長的高,則△AOQ的面積最大,

∴∠BOQ=∠AOQ-∠AOB=90°-80°=10°,

綜上所述:當∠BOQ的度數(shù)為10°或170°時,△AOQ的面積最大.【點睛】本題考查切線的性質(zhì)、等腰三角形的性質(zhì)、勾股定理、全等三角形的判定和性質(zhì)、旋轉(zhuǎn)變換等知識,解題的關鍵是正確尋找全等三角形,根據(jù)數(shù)形結(jié)合進行分類討論.23、(1)y=x2﹣2x﹣3,點A、B的坐標分別為:(﹣1,0)、(3,0);(2)存在,點P(1+,﹣);(3)故S有最大值為,此時點P(,﹣).【分析】(1)根據(jù)題意得到函數(shù)的對稱軸為:x=﹣=1,解出b=﹣2,即可求解;(2)四邊形POP′C為菱形,則yP=﹣OC=﹣,即可求解;(3)過點P作PH∥y軸交BC于點P,由點B、C的坐標得到直線BC的表達式,設點P(x,x2﹣2x﹣3),則點H(x,x﹣3),再根據(jù)ABPC的面積S=S△ABC+S△BCP即可求解.【詳解】(1)函數(shù)的對稱軸為:x=﹣=1,解得:b=﹣2,∴y=x2﹣2x+c,再將點C(0,﹣3)代入得到c=-3,,∴拋物線的表達式為:y=x2﹣2x﹣3,令y=0,則x=﹣1或3,故點A、B的坐標分別為:(﹣1,0)、(3,0);(2)存在,理由:如圖1,四邊形POP′C為菱形,則yP=﹣OC=﹣,即y=x2﹣2x﹣3=﹣,解得:x=1(舍去負值),故點P(1+,﹣);(3)過點P作PH∥y軸交BC于點P,由點B、C的坐標得到直線BC的表達式為:y=x﹣3,設點P(x,x2﹣2x﹣3),則點H(x,x﹣3),ABPC的面積S=S△ABC+S△BCP=×AB×OC+×PH×OB=×4×3+×3×(x﹣3﹣x2+2x+3)=﹣x2+x+6,=∵-<0,∴當x=時,S有最大值為,此時點P(,﹣).【點睛】此題是一道二次函數(shù)的綜合題,考查待定系數(shù)法求函數(shù)解析式,圖象與坐標軸的交點,翻折的性質(zhì),菱形的性質(zhì),利用函數(shù)解析式確定最大值,(3)是此題的難點,利用分割法求四邊形的面積是解題的關鍵.24、(1)④⑤;(2);(3)或.【分析】(1)作于M,交于N,如圖,利用三角函數(shù)的定義得到,設,則,利用勾股定理得,解得,即,,設正方形的邊長為x,則,,由于,則可判斷為定值;再利用得到,則可判斷為定值;在中,利用勾股定理和三角函數(shù)可判斷在變化,在變化,在變化;(2)易得四邊形為矩形,則,證明,利用相似比可得到y(tǒng)與x的關系式;(3)由于,與相似,且面積不相等,利用相似比得到,討論:當點P在點F點右側(cè)時,則,所以,當點P在點F點左側(cè)時,則,所以,然后分別解方程即可得到正方形的邊長.【詳解】(1)如圖,作于M,交于N,在中,∵,設,則,∵,∴,解得,∴,,設正方形的邊長為x,在中,∵,∴,∴,在中,,∴為定值;∵,∴,∴為定值;在中,,而在變化,∴在變化,在變化,∴在變化,所以和是始終保持不變的量;故答案為:④⑤(2)∵MN⊥AP,DEFG是正方形,∴四邊形為矩形,∴,∵,∴,∴,即,∴(3)∵,與相似,且面積不相等,∴,即,∴,當點P在點F點右側(cè)時,AP=AF+PF==,∴,解得,當點P在點F點左側(cè)時,,∴,解得,綜上所述,正方形的邊長為或.【點睛】本題考查了相似形綜合題:熟練掌握銳角三角函數(shù)的定義、正方形的性質(zhì)和相似三角形的判定與性質(zhì).25、(1);(2)①,②;(3)【解析】(1)作AH⊥OB,根據(jù)正弦的定義即可求解;(2)作MC⊥OB,先求出直線AB解析式,根據(jù)等腰三角形的性質(zhì)及三角函數(shù)的定義求出M點坐標,根據(jù)MN∥OB,求出N點坐標;(3)由于點C是定點,點P隨△ABO旋轉(zhuǎn)時的運動軌跡是以B為圓心,BP長為半徑的圓,故根據(jù)點和圓的位置關系可知,當點P在線段OB上時,CP=BP-BC最短;當點P在線段OB延長線上時,CP=BP+BC最長.又因為BP的長因點D運動而改變,可先求BP長度的范圍.由垂線段最短可知,當BP垂直MN時,BP最短,求得的BP代入CP=BP-BC求CP的最小值;由于BM>B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論