版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
DistributedSystemsComputer&InformationCollege,HohaiUniversitySept.2013CourseIntroductionQuestions?PleasecompletesurveyquestionsWhataredistributedsystems?Examples?MultiplehostsAnetworkcloudHostscooperatetoprovideaunifiedserviceWhydistributedsystems?forease-of-useHandlegeographicseparationProvideusers(orapplications)withlocationtransparency:Web:accessinformationwithafew“clicks”Networkfilesystem:accessfilesonremoteserversasiftheyareonalocaldisk,sharefilesamongmultiplecomputersWhydistributedsystems?foravailabilityBuildareliablesystemoutofunreliablepartsHardwarecanfail:poweroutage,diskfailures,memorycorruption,networkswitchfailures…Softwarecanfail:bugs,mis-configuration,upgrade…Toachieve0.999999availability,replicatedata/computationonmanyhostswithautomaticfailoverWhydistributedsystems?
forscalablecapacityAggregateresourcesofmanycomputersCPU:Dryad,MapReduce,Gridcomputing,CloudComputingBandwidth:AkamaiCDN,BitTorrentDisk:Frangipani,Googlefilesystem,DataCenterChallengesSystemdesignWhatistherightinterfaceorabstraction?Howtopartitionfunctionsforscalability?ConsistencyHowtosharedataconsistentlyamongmultiplereaders/writers?FaultToleranceHowtokeepsystemavailabledespitenodeornetworkfailures?Challenges(continued)SecurityHowtoauthenticateclientsorservers?Howtodefendagainstorauditmisbehavingservers?ImplementationHowtomaximizeIOparallelism?Howtoreduceloadonthebottleneckresource?AwordofwarningEasytomakedistributedsystemsthatarelessreliableandworseperformancethancentralizedsystems! PerformancecanbesubtleGoal:sustainedperformanceunderhighloadToy“distributedsystem”:
2employeesrunStarbucksEmployee1:takeordersfromcustomers,callsouttoemployee2Employee2:Writedownorders(5secondsperorder)Makedrinks(10secondsperorder)Whatisstarbuck’sthroughputunderincreasingload?Starbucks’throughputWhatistheidealcurve?Whatdesignachievesit?Ordersperminute(offeredload)4812drinksperminute(tput)24ReliabilitycanbesubtletooAdistributedsystemisasysteminwhichIcan’tdomyworkbecausesomecomputerthatI’veneverevenheardofhasfailed.”--LeslieLamportTopicsinthiscourseDistributedsystemsarchitecturesCommunication–RPC,RMI,MessageQueue…Processes–client,serversandmigratingcodeNaming–namingandfindingthingsSynchronization–gettingeverybodyinpaceConsistencyandreplication–scalability,replicationandconsistencyFaulttolerance–survivingfailuresSecurity–ensuringprivacyCommonparadigms–SOA,P2P,CloudComputingWebInfrastructureThisclasswillteachyou…PresentaconceptualmodelofdistributedsystemsDescribekeycomponentsofadistributedsystemandevaluatethetradeoffsofalternativearchitecturalmodelsSuggestalgorithmsuitableforapplicationindistributedsystemsBuildprototypeimplementationsofdistributedsystemsDemonstrateanunderstandingofthechallengesfacedbyfuturedistributedsystemsCoursereadingsDistributedSystems:PrinciplesandParadigms,byAndrewS.Tanenbaum,MaartenvenSteen,Prentice-Hall,2007.DistributedSystems:ConceptsandDesign,byGeorgeCoulouris,JeanDollimore,TimKindberg,AddisonWesley,2005.ReliableDistributedSystems:Technologies,WebServices,andApplications,byKennethP.Birman,SpringerVerlag,2005.分布式系統(tǒng)原理與范型,辛春生,陳宗斌等譯,2008,清華大學(xué)出版社DistributedSystems:PrinciplesandParadigmsPrincipleadescriptivecomprehensiveandfundamentallaw,doctrine,orassumption;具有普遍意義的最基本的規(guī)律??茖W(xué)的原理,由實(shí)踐確定其正確性,可作為其他規(guī)律的基礎(chǔ)。也指具有普遍意義的道理。ParadigmtheOxfordEnglishDictionarydefinesparadigmas"apatternormodel,anexemplar.“Howisanexperimenttobeconducted,andwhatequipmentisavailabletoconducttheexperiment.howdistributedapplicationsshouldbedeveloped每一個(gè)科學(xué)發(fā)展階段都有特殊的內(nèi)在結(jié)構(gòu),而體現(xiàn)這種結(jié)構(gòu)的模型即“范式”。OrganizationofthebookPrinciplesofdistributedsystemsarediscussedinchapters2-902Architectures,03Processes,04Communication05Naming,06Synchronization,07ConsistencyandReplication08FaultTolerance,09SecurityWhereoverallapproachestohowdistributedapplicationsshouldbedeveloped(theparadigms)arediscussedinchapter10-1310DistributedObject-BasedSystems,11DistributedFileSystems,12DistributedWeb-BasedSystems13DistributedCoordination-BasedSystemsReferences
http://www.ece.ubc.ca/~matei/EECE411/
/~chiran/cs171/DistributedComputing,Peer-to-PeerandGRIDSCS244B,CS244C@StanfordFall2007:AdvancedandDistributedOperatingSystems@CMUDistributedComputerSystemsEngineering@MITcs425@UIUC
/~kig/CS333_SP97/References
GoogleCodeforEducatorsandRelatedCoursesClusterComputingandMapReduceMiniLectureSeriesIntroductiontoProblemSolvingonLargeScaleClustersUniv.ofWashington,CSE490h:Problem-solvingonlarge-scaleclusters:theoryandapplicationsUniv.ofMaryland’sJimmyLin:Web-ScaleInformationProcessingApplicationsMapReduceinaWeek/edu/parallel/index.html/edu/content/parallel.htmlCourseOrganizationCourseisorganizedasaseriesofLectures–asetoflecturesonthecorematerialReadings–additionalreadingsfrompapersandbookPresentation–paperdiscussionExam–finalreportortake-classfinalexamClassparticipationHowareyouevaluated?Classparticipation10%PaperorPresentation30%Exam60%Question?IntroductionofDistributedSystemsOutline1.0Motivation1.1DefinitionofADistributedSystem1.2GoalsMakingResourcesAccessibleDistributionTransparencyOpennessScalabilityPitfalls1.3TypesofDistributedSystemsDistributedComputingSystemsDistributedInformationSystemsDistributedPervasiveSystemsMotivationResourcesharing–bothphysicalresourcesandinformationComputationspeedup–tosolvelargeproblems,wewillneedmanycooperatingmachinesReliability-machinesfailfrequentlyCommunication–peoplecollaboratingfromremotesitesManyapplicationsarebytheirnaturedistributed(ATMs,airlineticketreservation,etc)TwoMainStimuliTechnologicalchangeUserneedsTechnologyadvancesNetworkingProcessorsMemoryStorageProtocolNetworkingJune1976:RobertMetcalfepresentstheconceptofEthernetattheNationalComputerConference1980:Ethernetintroducedasdefactostandard(DEC,Intel,Xerox)1985:thickEthernet:10Mbps,Bus-based1991:10BaseT-twistedpair:10Mbps1995:100MbpsEthernet1998:GigabitEthernet1999:802.11bstandard2001:10Gbpsintroduced2005:100Gbps(overopticallink)NetworkConnectivityThen:
largecompaniesanduniversitiesonInternetgatewaysbetweenothernetworksdial-upbulletinboards1985:1,961hostsontheInternetintheworldNow:OneInternet(mostly)2011:600millionhostsontheInternetinChina,2billionintheworldwidespreadconnectivity
High-speedWANconnectivity:1–>1GbpsSwitchedLANswirelessnetworkingcomputingpowercomputersgotsmallercheaperpowerefficientFastermicroprocessorsbecametechnologyleadersMemorymemoryhierarchiescacheshidelatencyofmainmemoryaccess,increaseaccessbandwidthmemorygetsdenser,processorsgetfasterlargercacheson-chipcache:1984:127bytes,today:multilevelcaches:firstintroduced~1986,today:cachingtechniquesreduceorhidemisslatenciescache-awareprogrammers/compliers/computersStoragecostreducedMainMemoryyear$/MBtypical1977$32,00016K1987$250640K-2MB1997$264MB-256MB2007$0.06512MB-2GB+2013$0.014GB-8GB+9,000xcheaper
4,000xmorecapacityStorage:disk131,000xcheaperin20years
30,000xmorecapacityRecordingdensityincreasedover60,000,000timesover50years1977:
310KBfloppydrive–$14801987:40MBdrivefor–$6792008:750GBdrivefor–$99,$0.13/GB2013:2TBdrivefor-$99,$0.05/GBProtocolsFasterCPUmoretimeforprotocolprocessingECC,checksums,parsing(e.g.XML)Image,audiocompressionfeasibleFasternetwork
biggerandbloatedprotocols(e.g.,SOAP/XML,H.232)transfermoredata(e.g.,music,movies,streamingdata)MorestoragestorerichmediaMediadeliveryandstorageAudioMPEG-3telephonequality:8kbpsMPEG-3FMquality:56-64kbps36hours/GBTelephoneaudio:64kbpsMPEG-3compressednear-CDaudio:96kbpsMPEG-3CDqualityaudio:112kbps20hours/GBCDqualityaudio:1.4MbpsHDTVaudio:3MbpsVideoMPEG-1compressedNTSCvideo:1.5Mbps1.5hours/GBJPEGcompressedNTSCvideo:3-7MbpsHDTVvideo:22-40Mbps4.5minutes/GBDigitalmoviesCompressed:45-65GB/moviesDecompressed:1.6TBStreamat1.5Gb/secDevelopmentofComputerTechnology1950s:serialprocessors1960s:batchprocessing1970s:time-sharing1980s:personalcomputing1990s:parallel,network,anddistributedprocessing2000s:wirelessnetworksandmobilecomputing2010s:cloudcomputingandsocialcomputingPeoplearedistributedOutline1.0Motivation1.1DefinitionofADistributedSystem
1.2GoalsMakingResourcesAccessibleDistributionTransparencyOpennessScalabilityPitfalls1.3TypesofDistributedSystemsDistributedComputingSystemsDistributedInformationSystemsDistributedPervasiveSystemsDistributedSystem:Definition(1)VerybroaddefinitionAcollectionofindependentcomputersthatappearstoitsuserasasinglecoherentsystem.Distributedsystemsare"seamless":theinterfacesamongfunctionalunitsonthenetworkareforthemostpartinvisibletotheuser.Twoaspects(1)independentcomputers(2)singlesystem=>middleware.DistributedSystem:Definition(2)DifferencesbetweenthevariouscomputersandthewaysinwhichtheycommunicatearemostlyhiddenfromusersUsersandapplicationscaninteractwithadistributedsysteminaconsistentanduniformway,regardlessofwhereandwheninteractiontakesplace.Adistributedsystemorganizedasmiddleware.Themiddlewarelayerextendsovermultiplemachines,andofferseachapplicationthesameinterface.GoalsofDistributedSystemsMakingresourcesavailableDistributiontransparencyOpennessScalabilityMakeResourcesAccessibleAccessresourcesandsharetheminacontrolledandefficientway.Printers,computers,storagefacilities,data,files,Webpages,andnetworks,…Connectingusersandresourcesalsomakesiteasiertocollaborateandexchangeinformation.Internetforexchangingfiles,mail,documents,audio,andvideoSecurityisbecomingincreasinglyimportantLittleprotectionagainsteavesdroppingorintrusiononcommunicationTrackingcommunicationtobuildupapreferenceprofileofaspecificuserDistributionTransparencyTransparency:hidethefactthatitsprocessesandresourcesarephysicallydistributedacrossmultiplecomputers.Access–What’sdatarepresentation?Connectingmachineswithdifferentarchitectureandfile-nameconventionsLocation–Where’stheresourcelocated?NamingiskeyMigration–Havetheresourcemoved?Replication–Istheresourcebeingmove?Concurrency–Isanybodyelseaccessingtheresourcenow?Failure–Hasitbeenworkingallalong?DistributionTransparencyNote:Distributiontransparencymaybesetasagoal,butachievingitisadifferentstory.DistributedSystem:DefinitionDuetoLesliLamportAdistributedsystemis“Youknowyouhaveonewhenthecrashofacomputeryou’veneverheardofstopsyoufromgettinganyworkdone.”Thisdescriptionputsthefingeronanotherimportantissueofdistributedsystemsdesign:dealingwithfailures.LesliLamportLamportisbestknownforhisseminalworkindistributedsystems
andastheinitialdeveloperofthedocumentpreparationsystemLaTeX.Lamport’sresearchcontributionshavelaidthefoundationsofthetheoryofdistributedsystems.Amonghismostnotablepapersare“Time,Clocks,andtheOrderingofEventsinaDistributedSystem”,whichreceivedthePODCInfluentialPaperAwardin2000“TheByzantineGeneralsProblem”“DistributedSnapshots:DeterminingGlobalStatesofaDistributedSystem”and“ThePart-TimeParliament”.Thesepapersrelatetosuchconceptsaslogicalclocks
(andthehappened-beforerelationship)andByzantinefailures.Theyareamongthemostcitedpapersinthefieldofcomputerscienceanddescribealgorithmstosolvemanyfundamentalproblemsindistributedsystems,including:thePaxosalgorithm
forconsensus,thebakeryalgorithmformutualexclusion
ofmultiplethreadsinacomputersystemthatrequirethesameresourcesatthesametimeandthesnapshotalgorithm
forthedeterminationofconsistentglobalstates.DegreeofTransparencyObservation:Aimingatfulldistributiontransparencymaybetoomuch:Usersmaybelocatedindifferentcontinents;distributionisapparentandnotsomethingyouwanttohideCompletelyhidingfailuresofnetworksandnodesis(theoreticallyandpractically)impossibleYoucannotdistinguishaslowcomputerfromafailingoneYoucanneverbesurethataserveractuallyperformedanoperationbeforeacrashFulltransparencywillcostperformance,exposingdistributionofthesystemKeepingWebcachesexactly
up-to-datewiththemastercopyImmediatelyflushingwriteoperationstodiskforfaulttoleranceDegreeofTransparencyDowereally
wanttransparency?Impossible–remotecontrollingaspaceshipAbadidea–creatingfalseexpectationsAgainstapplication’sgoals–pervasivecomputingandlocationawarenessScaleinDistributedSystemsObservation:Manydevelopersofmoderndistributedsystemeasilyusetheadjective“scalable”withoutmakingclearwhy
theirsystemactuallyscales.Scalability:Atleastthreecomponents:Numberofusersand/orprocesses(sizescalability)Maximumdistancebetweennodes(geographicalscalability)Numberofadministrativedomains(administrativescalability)ScalabilityProblems@sizeDecentralizedalgorithms:Nomachinehascompleteinformationaboutthesystemstate.Machinesmakedecisionsbasedonlyonlocalinformation.FailureofonemachinedoesnotruinthealgorithmThereisnoimplicitassumptionthataglobalclockexistsScalabilityProblems@geographySynchronouscommunicationApartyrequestingservice,generallyreferredtoasaclient,blocksuntilareplyissentback.WANsisunreliableandPoint-to-pointLANsprovidereliablecommunicationfacilitiesbasedonbroadcasting.Geographicalscalabilityisstronglyrelatedtotheproblemsofcentralizedsolutionsthathindersizescalability.Inaddition,centralizedcomponentsnowleadtoawasteofnetworkresources.ScalabilityProblems@administrationItisadifficultandinmanycasesopenquestionConflictingpoliceswithrespecttoresourceusage(andpayment),management,andsecurity.E.g.,Residewithinasingledomaincanoftenbetrustedbyusersthatoperatewithinthatsamedomain.DownloadingprogramssuchasappletsinWebbrowsers.TechniquesforScalingHidecommunicationlatencies:
Avoidwaitingforresponses;dosomethingelse:MakeuseofasynchronouscommunicationHaveseparatehandlerforincomingresponseProblem:noteveryapplicationfitsthismodelMovecomputationstoclients(Javaapplets)Distribution:
Partitiondataandcomputationsacrossmultiplemachines:Decentralizednamingservices(DNS)Decentralizedinformationsystems(WWW)Replication/caching:
Makecopiesofdataavailableatdifferentmachines:ReplicatedfileserversanddatabasesMirroredWebsitesWebcaches(inbrowsersandproxies)Filecaching(atserverandclient)ScalingTechniquesExample(1)Technique:OffloadworktoclientsScalingTechniquesExample(2)Technique:Dividetheproblemspace.
example:thewayDNSdividesthenamespaceintozones.Scaling–TheProblemObservation:Applyingscalingtechniquesiseasy,exceptforonething:Havingmultiplecopies(cachedorreplicated),leadstoinconsistencies:modifyingonecopymakesthatcopydifferentfromtherest.Alwayskeepingcopiesconsistentandinageneralwayrequiresglobalsynchronization
oneachmodification.Globalsynchronizationprecludeslarge-scalesolutions.Observation:Ifwecantolerateinconsistencies,wemayreducetheneedforglobalsynchronization.Observation:Toleratinginconsistenciesisapplicationdependent.OpennessGoal:Opendistributedsystem--abletointeractwithservicesfromotheropensystems,irrespectiveoftheunderlyingenvironment:Standardrules(protocols/interfaces)todescribeservices/componentsInterfaceddefinitionsshouldbe:Complete&VendorneutralThesehelpmakingsystem/servicesshouldinteroperable&portableFlexibility–abilitytointegratemultiplecomponentsAchievingopenness:Atleastmakethedistributedsystemindependentfromheterogeneity
oftheunderlyingenvironment:HardwarePlatformsLanguagesSeparatingpolicyandmechanismToachieveflexibility:
splitthesystemsinsmallercomponents.Componentsrequiressupportfordifferentpoliciesspecifiedbyapplicationsandusers:Example–webbrowsercaching;Mechanism:cachinginfrastructurePolicy:whattocache,howlargethecacheis,cachereplacementalgorithms,OtherexamplesWhichoperationsdoweallowdownloadedcodetoperform?WhichQoSrequirementsdoweadjustinthefaceofvaryingbandwidth?Whatlevelofsecrecydowerequireforcommunication?DevelopingDistributedSystems:PitfallsObservation:Manydistributedsystemsareneedlesslycomplexcausedbymistakesthatrequiredpatchinglateron.Manypossiblefalseassumptions:ThenetworkisreliableThenetworkissecureThenetworkishomogeneousThetopologydoesnotchangeLatencyiszeroBandwidthisinfiniteTransportcostiszeroThereisoneadministratorOutline1.0Motivation1.1DefinitionofADistributedSystem1.2GoalsMakingResourcesAccessibleDistributionTransparencyOpennessScalabilityPitfalls1.3TypesofDistributedSystemsDistributedComputingSystemsDistributedInformationSystemsDistributedPervasiveSystemsTypesofDistributedSystemsDistributedcomputingsystemsCommonlyusedinhigh-performancecomputingClustersGridsDistributedinformationsystemsDistributedtransactionsystemsEnterpriseapplicationintegrationDistributedpervasivesystemsHomesystemsHealthcareSensornetworksDistributedComputingSystems(1/2)Observation:ManydistributedsystemsareconfiguredforHigh-PerformanceComputingClusterComputing:Essentiallyagroupofhigh-endsystemsconnectedthroughaLAN:Homogeneous:sameOS,near-identicalhardwareSinglemanagingnodeBeowulfclusterconfigurationMasternodeprovidesinterfacetouserandhandlesjoballocationsDistributedComputingSystems(2/2)GridComputing:lotsofnodesfromeverywhere:HeterogeneousDispersedacrossseveralorganizationsCaneasilyspanawide-areanetworkKeyissue–sharingresourcesacrossorganizationsThus,muchpaingoesintostandardsandinterfacesNote:Toallowforcollaborations,gridsgenerallyusevirtualorganizations.Inessence,thisisagroupingofusers(orbetter:theirIDs)thatwillallowforauthorizationonresourceallocation.DistributedComputingSystems(2/2)AnearlyexamplearchitectureforgridsFabric–interfacestolocalresourcesConnectivity–communicationprotocolsforsupportingtransactionsusingmultipleresourcesResource–managementofasingleresourceCollective–handle
accesstomultipleresourcesAlayeredarchitectureforgridcomputingsystems.DistributedInformationSystemsObservation:organizationsthatwereconfrontedwithawealthofnetworkedapplications,butforwhichinteroperabilityturnedouttobeapainfulexperience.Manyoftheexistingmiddlewaresolutionsaretheresultofworkingwithaninfrastructureinwhichitwaseasiertointegrateapplicationsintoanenterprise-wideinformationsystemWecandistinguishseverallevelsatwhichintegrationtookplace.TransactionProcessingSystemsInmanycases,anetworkedapplicationsimplyconsistedofaserverrunningthatapplication(oftenincludingadatabase)andmakingitavailabletoremoteprograms,calledclients.EnterpriseApplicationIntegration(EAI)Asapplicationsbecamemoresophisticatedandweregraduallyseparatedintoindependentcomponents(notablydistinguishingdatabasecomponentsfromprocessingcomponents),itbecameclearthatintegrationshouldalsotakeplacebylettingapplicationscommunicatedirectlywitheachother.DistributedinformationsystemsOrganizationshavemultiplenetworkedapplications–howtointegratethem?Fordatabase-orientedapplication&atthelowestlevelTransaction–setofoperationwithACIDpropertiesAtomic–allornothingatallConsistent–ifconsistentbefore,consistentafterIsolated–concurrenttransactionsdon’tinterferewitheachotherDurable–onceit’sdone,it’spermanentNestedtransactionsfordistributedsystemsPermanent?Onlyforthetop-leveltransactionTointegrateapplicationindependentfromtheirdatabasesDifferentcommunicationmodels:RPC,RMI,andMOM…DistributedInformationSystemsObservation:Thevastamountofdistributedsystemsinusetodayareformsoftraditionalinformationsystems,thatnowintegratelegacysystems.Example:Transactionprocessingsystems.BEGINTRANSACTION(server,transaction);READ(transaction,file-1,data);WRITE(transaction,file-2,data);newData:=MODIFIED(data);IFWRONG(newData)THEN ABORTTRANSACTION(transaction);ELSE WRITE(transaction,file-2,newData); ENDTRANSACTION(transaction);ENDIF;Essential:AllREADandWRITEoperationsareexecuted,i.e.theireffectsaremadepermanentattheexecutionofENDTRANSACTION.Observation:Transactionsformanatomic
operation.AnestedtransactionsIsconstructedfromanumberofsubtransactionsGainperformanceorsimplifyprogramming.TransactionProcessingMonitorObservation:Inmanycases,thedatainvolvedinatransactionisdistributedacrossseveralservers.ATPMonitor
isresponsibleforcoordinatingtheexecutionofatransaction:DistributedInformationSystems:
EnterpriseApplicationIntegrationProblem:ATPmonitorworksfinefordatabaseapplications,butinmanycases,theappsneededtobeseparatedfromthedatabasestheywereactingon.Instead,whatwasneededwerefacilitiesfordirectcommunicationbetweenapplications:RemoteProcedureCall(RPC)Message-OrientedMiddleware(MOM)DistributedPervasiveSystemsObservation:Thereisanext-generationofdistributedsystemsemerginginwhichthenodesaresmall,mobile,andoftenembeddedaspartofalargersystem.Somerequirements:Contextualchange:Thesystemispartofanenvironmentinwhichchangesshouldbeimmediatelyaccountedfor.Adhoccomposition:Eachnodemaybeusedinaverydifferentwaysbydifferentusers.Requiresease-of-configuration.Sharingisthedefault:Nodescomeandgo,providingsharableservicesandinformation.Callsagainforsimplicity.Observation:Pervasivenessanddistributiontransparencymaynotalwaysformagoodmatch.PervasiveSystems:ExamplesHomeSystems:Shouldbecompletelyself-organizing:ThereshouldbenosystemadministratorProvideapersonalspace
foreachofitsusersSimplestsolution:acentralizedhomebox?Electronichealthsystems:Devicesarephysicallyclosetoaperson:Whereandhowshouldmonitoreddatabestored?Howcanwepreventlossofcrucialdata?Whatinfrastructureisneededtogenerateandpropagatealerts?Howcansecuritybeenforced?Howcanphysiciansprovideonlinefeedback?SensornetworksCharacteristics:Thenodestowhichsensorsareattachedare:Many(10s-1000s)Simple(i.e.,hardlyanymemory,CPUpower,orcommunicationfacilities)Oftenbattery-powered(orevenbattery-less)Sensornetworksasdistributedsystems:considerthemfromadatabaseperspective:Summary(1/2)Distributedsystemsconsistofautonomouscomputersthatworktogethertogivetheappearanceofasinglecoherentsystem.Oneimportantadvantageisthattheymakeiteasiertointegratedifferentapplicationsrunningondifferentcomputersintoasinglesystem.
Anotheradvantageisthatwhenproperlydesigned,distributedsystemsscalewellwithrespecttothesizeoftheunderlyingnetwork.Distributedsystemsoftenaimathidingmanyoftheintricaciesrelatedtothedistributionofprocesses,data,andcontrol.However,thisdistributiontransparencynotonlycomesataperformanceprice,butinpracticalsituationsitcanneverbefullyachieved.Thefactthattrade-offsneedtobemadebetweenachievingvariousformsofdistributiontransparencyandcaneasilycomplicatetheirunderstanding.Summary(2/2)Mattersarefurthercomplicatedbythefactthatmanydevelopersinitiallymakeassumptionsabouttheunderlyingnetworkthatarefundamentallywrong.Later,whenassumptionsaredropped,itmayturnouttobedifficulttomaskunwantedbehavior.Otherpitfallsincludeassumingthatthenetworkisreliable,static,secure,andhomogeneous.Differenttypesofdistributedsystemsexistwhichcanbeclassifiedasbeingorientedtowardsupportingcomputations,informationprocessing,andpervasiveness.Distributedcomputingsystemsaretypicallydeployedforhigh-performanceapplicationsoftenoriginatingfromthefieldofparallelcomputing.Ahugeclassofdistributedcanbefoundintraditionalofficeenvironmentswhereweseedatabasesplayinganimportantrole.Typically,transactionprocessingsystemsaredeployedintheseenvironments.Finally,anemergingclassofdistributedsystemsiswherecomponentsaresmallandthesystemiscomposedinanadhocfashion,butmostofallisnolongermanagedthroughasystemadministrator.DistributedSystems
ArchitecturesYingchiMaoOutlineArchitecturalstylesSystemarchitecturesArchitecturesversusmiddlewareSelf-managementindistributedsystemsWhatisaDistributedSystem?Adistributedsystemis:acollectionofindependentcomputersthatappearstoitsusersasasinglecoherentsystemDefinitionofaDistributedSystem(II)IndependenthardwareinstallationsUniformsoftwarelayer(middleware)Note:themiddlewarelayerextendsovermultiplemachinesMiddlewareGeneralstructureofadistributedsystemasmiddleware.MiddlewareandInteroperabilityInteroperabilityprovidedby:ProtocolsusedbyeachmiddlewarelayerInterfacesofferedtoapplicationsIndependent
hardwareinstallationsUniformsoftwarelayer(middle
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年小學(xué)三年級(jí)第一學(xué)期班級(jí)德育工作計(jì)劃范文
- 2025幼兒園年度工作計(jì)劃表格模板
- 2025年房產(chǎn)工作計(jì)劃范文
- 2025年幼兒園保健個(gè)人工作計(jì)劃范文
- 2025年新護(hù)士工作計(jì)劃例文
- 2025年度幼兒園大班工作計(jì)劃范文
- 2025年秋季學(xué)期幼兒園大班教學(xué)工作計(jì)劃
- 汽車?yán)飨嚓P(guān)行業(yè)投資方案
- 2025幼兒園英語高效工作計(jì)劃范文
- 2025年國際禁毒日宣傳活動(dòng)工作計(jì)劃
- 2023年六安霍邱合高現(xiàn)代產(chǎn)業(yè)園投資有限公司招聘筆試題庫含答案解析
- 代縣雁門光伏升壓站~寧遠(yuǎn)220kV線路工程環(huán)評(píng)報(bào)告
- 承諾函(支付寶)
- 危險(xiǎn)化學(xué)品目錄2023
- GB/T 24123-2009電容器用金屬化薄膜
- 艾滋病梅毒乙肝實(shí)驗(yàn)室檢測(cè)
- 國鐵橋梁人行道支架制作及安裝施工要點(diǎn)課件
- 領(lǐng)導(dǎo)科學(xué)全套精講課件
- 粵教版地理七年級(jí)下冊(cè)全冊(cè)課件
- 小學(xué)科學(xué)蘇教版六年級(jí)上冊(cè)全冊(cè)精華知識(shí)點(diǎn)(2022新版)
- 萎縮性胃炎共識(shí)解讀
評(píng)論
0/150
提交評(píng)論