版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年江蘇省連云港市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.
2.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2
3.設(shè)y=3-x,則y'=()。A.-3-xln3
B.3-xlnx
C.-3-x-1
D.3-x-1
4.
5.若函數(shù)f(x)=5x,則f'(x)=
A.5x-1
B.x5x-1
C.5xln5
D.5x
6.
7.A.A.連續(xù)點(diǎn)
B.
C.
D.
8.微分方程y′-y=0的通解為().
A.y=ex+C
B.y=e-x+C
C.y=Cex
D.y=Ce-x
9.
10.
11.A.-e2x-y
B.e2x-y
C.-2e2x-y
D.2e2x-y
12.設(shè)y=5x,則y'=A.A.5xln5
B.5x/ln5
C.x5x-1
D.5xlnx
13.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx
14.
15.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.
16.
17.建立共同愿景屬于()的管理觀念。
A.科學(xué)管理B.企業(yè)再造C.學(xué)習(xí)型組織D.目標(biāo)管理
18.A.A.
B.
C.
D.
19.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線
20.A.A.
B.x2
C.2x
D.2
21.
22.構(gòu)件承載能力不包括()。
A.強(qiáng)度B.剛度C.穩(wěn)定性D.平衡性
23.
24.
25.
26.
27.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時(shí),有()A.△y>dy>0
B.△<dy<0
C.dy>Ay>0
D.dy<△y<0
28.
29.
30.
31.
32.
33.下列關(guān)系式正確的是().A.A.
B.
C.
D.
34.
35.
A.0
B.cos2-cos1
C.sin1-sin2
D.sin2-sin1
36.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)
37.
38.A.1B.0C.2D.1/2
39.
40.
41.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo)f(x)>0,則在(0,1)內(nèi)f(x)().
A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量
42.
43.設(shè)平面則平面π1與π2的關(guān)系為().A.A.平行但不重合B.重合C.垂直D.既不平行,也不垂直
44.
45.A.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與口有關(guān)
46.A.3x2+C
B.
C.x3+C
D.
47.
48.
49.A.A.條件收斂B.絕對收斂C.收斂性與k有關(guān)D.發(fā)散
50.剛體上A、B、C、D四點(diǎn)組成一個(gè)平行四邊形,如在其四個(gè)頂點(diǎn)作用四個(gè)力,此四個(gè)邊恰好組成封閉的力多邊形。則()
A.力系平衡
B.力系有合力
C.力系的合力偶矩等于平行四邊形ABCD的面積
D.力系的合力偶矩等于負(fù)的平行四邊形ABCD的面積的2倍
二、填空題(20題)51.
52.
53.54.
55.
56.設(shè)f(x,y)=sin(xy2),則df(x,y)=______.
57.58.微分方程y''+6y'+13y=0的通解為______.59.函數(shù)f(x)=在[1,2]上符合拉格朗日中值定理的ξ=________。60.
61.
62.
63.
64.
65.微分方程y'=2的通解為__________。
66.方程cosxsinydx+sinxcosydy=O的通解為______.
67.設(shè),且k為常數(shù),則k=______.68.設(shè)z=tan(xy-x2),則=______.
69.
70.三、計(jì)算題(20題)71.
72.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.73.74.
75.
76.將f(x)=e-2X展開為x的冪級數(shù).77.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
78.
79.80.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則
81.求微分方程y"-4y'+4y=e-2x的通解.
82.證明:83.
84.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
85.求曲線在點(diǎn)(1,3)處的切線方程.86.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
87.求微分方程的通解.88.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).89.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.90.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.四、解答題(10題)91.
92.
93.
94.將展開為x的冪級數(shù).
95.
96.
97.求微分方程y"-4y'+4y=e-2x的通解。
98.將周長為12的矩形繞其一邊旋轉(zhuǎn)得一圓柱體,問繞邊長為多少的邊旋轉(zhuǎn)才能使圓柱體的體積最大?
99.研究y=3x4-8x3+6x2+5的增減性、極值、極值點(diǎn)、曲線y=f(x)的凹凸區(qū)間與拐點(diǎn).
100.
五、高等數(shù)學(xué)(0題)101.f(x)在x=0的某鄰域內(nèi)一階導(dǎo)數(shù)連續(xù)且則()。A.x=0不是f(x)的極值點(diǎn)B.x=0是f(x)的極大值點(diǎn)C.x=0是f(x)的極小值點(diǎn)D.x=0是f(x)的拐點(diǎn)六、解答題(0題)102.
參考答案
1.C
2.D本題考查的知識點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
3.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。
4.A
5.C本題考查了導(dǎo)數(shù)的基本公式的知識點(diǎn)。f'(x)=(5x)'=5xln5.
6.D
7.C解析:
8.C所給方程為可分離變量方程.
9.D解析:
10.A
11.C本題考查了二元函數(shù)的高階偏導(dǎo)數(shù)的知識點(diǎn)。
12.A由導(dǎo)數(shù)公式可知(5x)'=5xln5,故選A。
13.B
14.D解析:
15.B本題考查的知識點(diǎn)為導(dǎo)數(shù)的運(yùn)算.
f(x)=2sinx,
f'(x)=2(sinx)'=2cosx,
可知應(yīng)選B.
16.C解析:
17.C解析:建立共同愿景屬于學(xué)習(xí)型組織的管理觀念。
18.C
19.D
20.D本題考查的知識點(diǎn)為原函數(shù)的概念.
可知應(yīng)選D.
21.A
22.D
23.C
24.A解析:
25.B解析:
26.D
27.B
28.C
29.B
30.A解析:
31.B
32.C
33.C本題考查的知識點(diǎn)為定積分的對稱性.
34.D
35.A由于定積分
存在,它表示一個(gè)確定的數(shù)值,其導(dǎo)數(shù)為零,因此選A.
36.A
37.C
38.C
39.B解析:
40.B
41.A本題考查的知識點(diǎn)為利用導(dǎo)數(shù)符號判定函數(shù)的單調(diào)性.
由于f(x)在(0,1)內(nèi)有f(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
42.D
43.C本題考查的知識點(diǎn)為兩平面的位置關(guān)系.
由于平面π1,π2的法向量分別為
可知n1⊥n2,從而π1⊥π2.應(yīng)選C.
44.D
45.A
46.B
47.B
48.C
49.A本題考杏的知識點(diǎn)為級數(shù)的絕對收斂與條件收斂.
50.D
51.
52.eyey
解析:53.1;本題考查的知識點(diǎn)為導(dǎo)數(shù)的計(jì)算.
54.1本題考查的知識點(diǎn)為定積分的換元積分法.
55.
56.y2cos(xy2)dx+2xycos(xy2)dydf(x,y)=cos(xy2)d(xy2)=cos(xy2)(y2dx+2xydy)=y2cos(xy2)dx+2xycos(xy2)dy也可先求出,而得出df(x,y).
57.58.y=e-3x(C1cos2x+C2sin2x)微分方程y''+6y'+13y=0的特征方程為r2+6r+13=0,特征根為所以微分方程的通解為y=e-3x(C1cos2x+C2sin2x).
59.由拉格朗日中值定理有=f"(ξ),解得ξ2=2,ξ=其中。
60.
61.f(x)+Cf(x)+C解析:
62.2x-4y+8z-7=063.本題考查的知識點(diǎn)為定積分的基本公式。
64.y+3x2+x
65.y=2x+C
66.sinx·siny=C由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=0,即d(sinx·siny)=0,兩邊積分得sinx·siny=C,這就是方程的通解.
67.本題考查的知識點(diǎn)為廣義積分的計(jì)算.
68.本題考查的知識點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
z=tan(xy-x2),
69.[e+∞)(注:如果寫成x≥e或(e+∞)或x>e都可以)。[e,+∞)(注:如果寫成x≥e或(e,+∞)或x>e都可以)。解析:
70.
71.
則
72.由二重積分物理意義知
73.
74.由一階線性微分方程通解公式有
75.
76.
77.
78.
79.80.由等價(jià)無窮小量的定義可知
81.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
82.
83.
84.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%85.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
86.
87.
88.
列表:
說明
89.
90.函數(shù)的定義域?yàn)?/p>
注意
91.
92.
93.
94.
;本題考查的知識點(diǎn)為將初等函數(shù)展開為x的冪級數(shù).
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度速記服務(wù)與保密協(xié)議–聚法通專業(yè)法庭記錄3篇
- 2025年版出租車公司股權(quán)轉(zhuǎn)讓及運(yùn)營權(quán)移交協(xié)議模板3篇
- 個(gè)人與個(gè)人2024年度租賃合同9篇
- 個(gè)性化咨詢服務(wù)2024年協(xié)議范本版A版
- 2025年航空航天零部件制造入股分紅合同4篇
- 2025年度智慧停車設(shè)施物業(yè)管理合同4篇
- 2025年度文化藝術(shù)品代付款協(xié)議書4篇
- 二零二五版勞動合同法修訂后企業(yè)應(yīng)對策略合同3篇
- 2025版?zhèn)}儲消防安全檢測與維護(hù)保養(yǎng)工程合同3篇
- 2025年高校食堂特色餐飲文化推廣承包服務(wù)協(xié)議2篇
- 2025年春新滬科版物理八年級下冊全冊教學(xué)課件
- 2025屆高考語文復(fù)習(xí):散文的結(jié)構(gòu)與行文思路 課件
- 電網(wǎng)調(diào)度基本知識課件
- 拉薩市2025屆高三第一次聯(lián)考(一模)語文試卷(含答案解析)
- 《保密法》培訓(xùn)課件
- 回收二手機(jī)免責(zé)協(xié)議書模板
- (正式版)JC∕T 60023-2024 石膏條板應(yīng)用技術(shù)規(guī)程
- (權(quán)變)領(lǐng)導(dǎo)行為理論
- 2024屆上海市浦東新區(qū)高三二模英語卷
- 2024年智慧工地相關(guān)知識考試試題及答案
- GB/T 8005.2-2011鋁及鋁合金術(shù)語第2部分:化學(xué)分析
評論
0/150
提交評論