![2022-2023學(xué)年湖南省懷化市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁(yè)](http://file4.renrendoc.com/view/a334249d36408acc38f114d6d9a32258/a334249d36408acc38f114d6d9a322581.gif)
![2022-2023學(xué)年湖南省懷化市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁(yè)](http://file4.renrendoc.com/view/a334249d36408acc38f114d6d9a32258/a334249d36408acc38f114d6d9a322582.gif)
![2022-2023學(xué)年湖南省懷化市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁(yè)](http://file4.renrendoc.com/view/a334249d36408acc38f114d6d9a32258/a334249d36408acc38f114d6d9a322583.gif)
![2022-2023學(xué)年湖南省懷化市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁(yè)](http://file4.renrendoc.com/view/a334249d36408acc38f114d6d9a32258/a334249d36408acc38f114d6d9a322584.gif)
![2022-2023學(xué)年湖南省懷化市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁(yè)](http://file4.renrendoc.com/view/a334249d36408acc38f114d6d9a32258/a334249d36408acc38f114d6d9a322585.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年湖南省懷化市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.
2.
3.
4.
5.
6.下列關(guān)于動(dòng)載荷的敘述不正確的一項(xiàng)是()。
A.動(dòng)載荷和靜載荷的本質(zhì)區(qū)別是前者構(gòu)件內(nèi)各點(diǎn)的加速度必須考慮,而后者可忽略不計(jì)
B.勻速直線運(yùn)動(dòng)時(shí)的動(dòng)荷因數(shù)為
C.自由落體沖擊時(shí)的動(dòng)荷因數(shù)為
D.增大靜變形是減小沖擊載荷的主要途徑
7.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)
8.
9.
10.
A.
B.
C.
D.
11.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
12.曲線y=lnx-2在點(diǎn)(e,-1)的切線方程為()A.A.
B.
C.
D.
13.
14.
15.設(shè)f(x)=e3x,則在x=0處的二階導(dǎo)數(shù)f"(0)=A.A.3B.6C.9D.9e
16.
17.A.2B.2xC.2yD.2x+2y
18.
19.設(shè)z=ln(x2+y),則等于()。A.
B.
C.
D.
20.A.f(1)-f(0)
B.2[f(1)-f(0)]
C.2[f(2)-f(0)]
D.
21.A.A.Ax
B.
C.
D.
22.設(shè)y=f(x)為可導(dǎo)函數(shù),則當(dāng)△x→0時(shí),△y-dy為△x的A.A.高階無(wú)窮小B.等價(jià)無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.低階無(wú)窮小
23.設(shè)f(x)在x=0處有二階連續(xù)導(dǎo)數(shù)
則x=0是f(x)的()。
A.間斷點(diǎn)B.極大值點(diǎn)C.極小值點(diǎn)D.拐點(diǎn)
24.
A.必定存在且值為0B.必定存在且值可能為0C.必定存在且值一定不為0D.可能不存在
25.設(shè)z=x2+y2,dz=()。
A.2ex2+y2(xdx+ydy)
B.2ex2+y2(zdy+ydx)
C.ex2+y2(xdx+ydy)
D.2ex2+y2(dx2+dy2)
26.A.A.0B.1/2C.1D.2
27.設(shè)區(qū)域D={(x,y)|-1≤x≤1,0≤y≤2},().A.1B.2C.3D.4
28.
29.
30.在下列函數(shù)中,在指定區(qū)間為有界的是()。
A.f(x)=22z∈(一∞,0)
B.f(x)=lnxz∈(0,1)
C.
D.f(x)=x2x∈(0,+∞)
31.級(jí)數(shù)(k為非零正常數(shù))().A.A.條件收斂B.絕對(duì)收斂C.收斂性與k有關(guān)D.發(fā)散
32.
A.f(x)
B.f(x)+C
C.f/(x)
D.f/(x)+C
33.
34.
35.
A.0
B.
C.1
D.
36.
37.
38.
39.A.A.sinx+sin2B.-sinx+sin2C.sinxD.-sinx
40.
41.
42.
43.設(shè)曲線y=x-ex在點(diǎn)(0,-1)處與直線l相切,則直線l的斜率為().A.A.∞B.1C.0D.-1
44.
45.
46.A.-e2x-y
B.e2x-y
C.-2e2x-y
D.2e2x-y
47.
48.
49.A.
B.
C.
D.
50.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=A.-1/x
B.1/x
C.-1/x2
D.1/x2
二、填空題(20題)51.
52.
53.
54.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則化為極坐標(biāo)系下的表達(dá)式為______.
55.
56.
57.設(shè)z=sin(x2y),則=________。
58.
59.
60.設(shè)z=x3y2,則=________。61.過(guò)原點(diǎn)且與直線垂直的平面方程為______.62.設(shè)y=2x+sin2,則y'=______.
63.
64.
65.
66.
67.設(shè)f(x)=ax3-6ax2+b在區(qū)間[-1,2]的最大值為2,最小值為-29,又知a>0,則a,b的取值為______.
68.69.
70.三、計(jì)算題(20題)71.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.72.證明:73.將f(x)=e-2X展開為x的冪級(jí)數(shù).74.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.75.
76.求曲線在點(diǎn)(1,3)處的切線方程.77.
78.求微分方程y"-4y'+4y=e-2x的通解.
79.
80.
81.82.求微分方程的通解.83.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
84.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
85.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
86.
87.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則88.89.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.90.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
四、解答題(10題)91.
92.
93.設(shè)
94.
95.所圍成的平面區(qū)域。
96.
97.計(jì)算∫xsinxdx。
98.
99.100.五、高等數(shù)學(xué)(0題)101.
是函數(shù)
的()。
A.連續(xù)點(diǎn)B.可去間斷點(diǎn)C.跳躍間斷點(diǎn)D.第二類問(wèn)斷點(diǎn)六、解答題(0題)102.
參考答案
1.A
2.A
3.D解析:
4.B
5.D
6.C
7.A
8.A
9.B
10.B
11.D由拉格朗日定理
12.D
13.B解析:
14.A
15.Cf(x)=e3x,f'(x)=3e3x,f"(x)=9e3x,f"(0)=9,因此選C。
16.C
17.A
18.A解析:
19.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。
20.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛頓-萊布尼茨公式.
可知應(yīng)選D.
21.D
22.A由微分的定義可知△y=dy+o(△x),因此當(dāng)△x→0時(shí)△y-dy=o(△x)為△x的高階無(wú)窮小,因此選A。
23.C則x=0是f(x)的極小值點(diǎn)。
24.B
25.A∵z=ex+y∴z"=ex2+y22x;zy"=ex2+y22y∴dz=ex2+y22xdx+ex2+y22ydy
26.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.
27.D的值等于區(qū)域D的面積,D為邊長(zhǎng)為2的正方形面積為4,因此選D。
28.B
29.D
30.A∵0<2x<1x∈(一∞,0)∴f(x)=2x在區(qū)間(一∞,0)內(nèi)為有界函數(shù)。
31.A
32.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.
33.D
34.A
35.A
36.A
37.D
38.A
39.D
40.D解析:
41.B
42.A
43.C本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.
由于y=x-ex,y'=1-ex,y'|x=0=0.由導(dǎo)數(shù)的幾何意義可知,曲線y=x-ex在點(diǎn)(0,-1)處切線斜率為0,因此選C.
44.C解析:
45.A
46.C本題考查了二元函數(shù)的高階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。
47.D
48.D
49.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。
50.C
51.
52.(e-1)2
53.22解析:
54.
;本題考查的知識(shí)點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問(wèn)題.
由于x2+y2≤a2,y>0可以表示為
0≤θ≤π,0≤r≤a,
因此
55.
56.
解析:57.設(shè)u=x2y,則z=sinu,因此=cosu.x2=x2cos(x2y)。
58.
59.-160.由z=x3y2,得=2x3y,故dz=3x2y2dx+2x3ydy,。61.2x+y-3z=0本題考查的知識(shí)點(diǎn)為平面方程和平面與直線的關(guān)系.
由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過(guò)原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y-3z=062.2xln2本題考查的知識(shí)點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.
本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.
Y'=(2x+sin2)'=(2x)'+(sin2)'=2xln2.
本題中常見的錯(cuò)誤有
(sin2)'=cos2.
這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為一個(gè)常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即
(sin2)'=0.
相仿(cos3)'=0,(ln5)'=0,(e1/2)'=0等.
請(qǐng)考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.
63.2xy(x+y)+364.F(sinx)+C
65.
解析:
66.
67.
f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因?yàn)閍>0,所以,f''(0)<0,所以x=0是極值點(diǎn).又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因?yàn)閍>0,故當(dāng)x=0時(shí),f(x)最大,即b=2;當(dāng)x=2時(shí),f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=.
68.
69.
70.71.函數(shù)的定義域?yàn)?/p>
注意
72.
73.74.由二重積分物理意義知
75.由一階線性微分方程通解公式有
76.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
77.
則
78.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
79.
80.
81.
82.
83.
84.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 真空絕熱材料行業(yè)市場(chǎng)分析
- 制藥原料采購(gòu)合同范本
- 做商務(wù)合同范本
- 2025年度數(shù)據(jù)中心制冷機(jī)電安裝合同
- 保潔用品轉(zhuǎn)讓合同范例
- ktv設(shè)備售后合同范本
- 借條可以轉(zhuǎn)讓合同范本
- 2025年新型節(jié)能中央空調(diào)采購(gòu)安裝與售后服務(wù)合同范本
- 養(yǎng)殖水管銷售合同范本
- 共同經(jīng)營(yíng)股東合同范本
- GB/T 26189.2-2024工作場(chǎng)所照明第2部分:室外作業(yè)場(chǎng)所的安全保障照明要求
- 七上 U2 過(guò)關(guān)單 (答案版)
- 2024年貴銀金融租賃公司招聘筆試參考題庫(kù)附帶答案詳解
- 英語(yǔ)人教版高中必修三(2019新編)第一單元教案
- GB/T 9535-1998地面用晶體硅光伏組件設(shè)計(jì)鑒定和定型
- GB 9706.1-2020醫(yī)用電氣設(shè)備第1部分:基本安全和基本性能的通用要求
- 口腔頜面外科:第十六章-功能性外科與計(jì)算機(jī)輔助外科課件
- 植物工廠,設(shè)計(jì)方案(精華)
- 貸款新人電銷話術(shù)表
- 音箱可靠性測(cè)試規(guī)范
- 數(shù)據(jù)結(jié)構(gòu)ppt課件完整版
評(píng)論
0/150
提交評(píng)論