版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年安徽省六安市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.設(shè)區(qū)域,將二重積分在極坐標(biāo)系下化為二次積分為()A.A.
B.
C.
D.
2.
3.
4.A.
B.
C.e-x
D.
5.()A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無(wú)關(guān)條件
6.
7.設(shè)y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx
8.
9.
10.
11.
12.
13.
等于()A.A.
B.
C.
D.0
14.
15.()工作是對(duì)決策工作在時(shí)間和空間兩個(gè)緯度上進(jìn)一步的展開和細(xì)化。
A.計(jì)劃B.組織C.控制D.領(lǐng)導(dǎo)
16.微分方程y"+y'=0的通解為
A.y=Ce-x
B.y=e-x+C
C.y=C1e-x+C2
D.y=e-x
17.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過(guò)小環(huán)M并勻速繞A點(diǎn)轉(zhuǎn)動(dòng),已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開始時(shí)AB桿處于水平位置,則當(dāng)小環(huán)M運(yùn)動(dòng)到圖示位置時(shí)(以MO為坐標(biāo)原點(diǎn),小環(huán)Md運(yùn)動(dòng)方程為正方向建立自然坐標(biāo)軸),下面說(shuō)法不正確的一項(xiàng)是()。
A.小環(huán)M的運(yùn)動(dòng)方程為s=2Rωt
B.小環(huán)M的速度為
C.小環(huán)M的切向加速度為0
D.小環(huán)M的法向加速度為2Rω2
18.
A.
B.
C.
D.
19.A.A.sin(x-1)+C
B.-sin(x-1)+C
C.sinx+C&nbsbr;
D.-sinx+C
20.
二、填空題(20題)21.
22.過(guò)點(diǎn)M0(2,0,-1)且平行于的直線方程為______.23.
24.
25.
26.
27.
28.
29.
30.
31.32.
33.
34.35.36.交換二重積分次序∫01dx∫x2xf(x,y)dy=________。37.
38.過(guò)點(diǎn)M0(1,2,-1)且與平面x-y+3z+1=0垂直的直線方程為_________。
39.設(shè)y=xe,則y'=_________.
40.過(guò)原點(diǎn)且與直線垂直的平面方程為______.三、計(jì)算題(20題)41.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則42.43.
44.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.45.
46.
47.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.48.
49.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
50.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).51.求曲線在點(diǎn)(1,3)處的切線方程.52.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
53.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.54.求微分方程的通解.55.將f(x)=e-2X展開為x的冪級(jí)數(shù).56.證明:
57.求微分方程y"-4y'+4y=e-2x的通解.
58.59.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
60.
四、解答題(10題)61.
62.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
63.
64.
65.
66.(本題滿分8分)
67.設(shè)y=x2+2x,求y'。
68.設(shè)y=x2ex,求y'。
69.70.設(shè)y=y(x)由確定,求dy.五、高等數(shù)學(xué)(0題)71.比較大小:
六、解答題(0題)72.
參考答案
1.A本題考查的知識(shí)點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分.
由于在極坐標(biāo)系下積分區(qū)域D可以表示為
0≤θ≤π,0≤r≤a.
因此
故知應(yīng)選A.
2.B
3.C
4.A
5.D內(nèi)的概念,與f(x)在點(diǎn)x0處是否有定義無(wú)關(guān).
6.C解析:
7.A
8.C解析:
9.D
10.D解析:
11.B
12.D解析:
13.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
由于當(dāng)f(x)可積時(shí),定積分的值為一個(gè)確定常數(shù),因此總有
故應(yīng)選D.
14.A
15.A解析:計(jì)劃工作是對(duì)決策工作在時(shí)間和空間兩個(gè)緯度上進(jìn)一步的展開和細(xì)分。
16.C解析:y"+y'=0,特征方程為r2+r=0,特征根為r1=0,r2=-1;方程的通解為y=C1e-x+C1,可知選C。
17.D
18.D
故選D.
19.A本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.
可知應(yīng)選A.
20.A解析:
21.
22.
23.
24.2
25.R
26.
27.y=1y=1解析:
28.1/2
29.11解析:
30.2
31.1本題考查了一階導(dǎo)數(shù)的知識(shí)點(diǎn)。32.(-∞,+∞).
本題考查的知識(shí)點(diǎn)為求冪級(jí)數(shù)的收斂區(qū)間.
若ρ=0,則收斂半徑R=+∞,收斂區(qū)間為(-∞,+∞).
若ρ=+∞,則收斂半徑R=0,級(jí)數(shù)僅在點(diǎn)x=0收斂.
33.
34.35.1/2
本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.
其積分區(qū)域如圖1—1陰影區(qū)域所示.
可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.
解法1
解法2化為先對(duì)y積分,后對(duì)x積分的二次積分.
作平行于y軸的直線與區(qū)域D相交,沿Y軸正向看,人口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此
x≤y≤1.
區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此
0≤x≤1.
可得知
解法3化為先對(duì)x積分,后對(duì)y積分的二次積分.
作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y(tǒng),作為積分上限,因此
0≤x≤y.
區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此
0≤y≤1.
可得知36.因?yàn)椤?1dx∫x2xf(x,y)dy,所以其區(qū)域如圖所示,所以先對(duì)x的積分為。37.本題考查的知識(shí)點(diǎn)為重要極限公式。
38.
39.(x+1)ex本題考查了函數(shù)導(dǎo)數(shù)的知識(shí)點(diǎn)。40.2x+y-3z=0本題考查的知識(shí)點(diǎn)為平面方程和平面與直線的關(guān)系.
由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過(guò)原點(diǎn),由平面的點(diǎn)法式方程,可知所求平面方程為2x+y-3z=041.由等價(jià)無(wú)窮小量的定義可知
42.
43.
則
44.
45.
46.
47.
48.由一階線性微分方程通解公式有
49.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
50.
列表:
說(shuō)明
51.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
52.
53.由二重積分物理意義知
54.
55.
56.
57.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
58.59.函數(shù)的定義域?yàn)?/p>
注意
60.
61.
解法1利用等價(jià)無(wú)窮小量代換.
解法2利用洛必達(dá)法則.
62.
63.
64.
65.
66.本題考查的知識(shí)點(diǎn)為求解-階線性微分方程.
所給方程為-階線性微分方程
67.y=x2+2xy'=(x2)'+(2x)=2x+2xIn2。y=x2+2x,y'=(x2)'+(2x)=2x+2xIn2。
68.y'=(x2)'ex+x2(ex)'=2xex+x2ex=ex(x2+2x)。y'=(x2)'ex+x2(e
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度建筑設(shè)施設(shè)備定期檢查維修合同3篇
- 二零二五年度海參產(chǎn)品跨境電商物流解決方案合同2篇
- 2024年甲方乙雙方關(guān)于停車場(chǎng)清潔維護(hù)合同
- 二零二五年度影視剪輯師國(guó)際項(xiàng)目聘用合同范本3篇
- 2025年度農(nóng)業(yè)現(xiàn)代化項(xiàng)目勞動(dòng)合同范本2篇
- 2024年高新技術(shù)企業(yè)項(xiàng)目經(jīng)理全權(quán)委托承包合同3篇
- 二零二五年度智能家居系統(tǒng)銷售安裝合同3篇
- 2025年度消防工程設(shè)計(jì)咨詢勞務(wù)承包合同范本3篇
- 2024金融機(jī)構(gòu)與客戶的委托理財(cái)合同
- 2024年版夫妻雙方自愿離婚合同文檔版B版
- 2024年國(guó)考行測(cè)真題-言語(yǔ)理解與表達(dá)真題及完整答案1套
- 2024屆高考數(shù)學(xué)復(fù)習(xí) 立體幾何考情分析及備考策略
- 基于課程標(biāo)準(zhǔn)的學(xué)生創(chuàng)新素養(yǎng)培育的學(xué)科教學(xué)改進(jìn)研究課題申報(bào)評(píng)審書
- 醫(yī)療人員廉潔從業(yè)九項(xiàng)準(zhǔn)則
- ISO13485內(nèi)部審核檢查表+內(nèi)審記錄
- 培訓(xùn)費(fèi)收款收據(jù)模板
- 2024年《藥物臨床試驗(yàn)質(zhì)量管理規(guī)范》(GCP)網(wǎng)絡(luò)培訓(xùn)題庫(kù)
- 2023-2024學(xué)年湖南長(zhǎng)沙市中學(xué)雅培粹學(xué)校數(shù)學(xué)七年級(jí)第一學(xué)期期末預(yù)測(cè)試題含解析
- 小學(xué)道德與法治課程標(biāo)準(zhǔn)與教材研究 課件 第1-5章 小學(xué)道德與法治課程標(biāo)準(zhǔn)研究-道德教育
- 酒店行政人事年工作總結(jié)
- 鈍感力讀后感課件
評(píng)論
0/150
提交評(píng)論