2022-2023學(xué)年甘肅省酒泉市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2022-2023學(xué)年甘肅省酒泉市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2022-2023學(xué)年甘肅省酒泉市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2022-2023學(xué)年甘肅省酒泉市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2022-2023學(xué)年甘肅省酒泉市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年甘肅省酒泉市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.()A.A.sinx+C

B.cosx+C

C.-sinx+C

D.-cosx+C

2.冪級(jí)數(shù)的收斂半徑為()A.1B.2C.3D.4

3.

4.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是

A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)5.A.A.

B.

C.

D.

6.A.A.2B.1/2C.-2D.-1/27.設(shè)y=sin2x,則y'等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x

8.

9.

10.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線

11.

12.

13.

14.

15.

A.sinx+C

B.cosx+C

C.-sinx+C

D.-COSx+C

16.

17.A.x2+C

B.x2-x+C

C.2x2+x+C

D.2x2+C

18.

19.當(dāng)x→0時(shí),x2是2x的A.A.低階無(wú)窮小B.等價(jià)無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.高階無(wú)窮小

20.

二、填空題(20題)21.

22.

23.∫e-3xdx=__________。

24.曲線y=x3+2x+3的拐點(diǎn)坐標(biāo)是_______。

25.

26.

27.設(shè)y=f(x)在點(diǎn)x=0處可導(dǎo),且x=0為f(x)的極值點(diǎn),則f'(0)=______.28.

29.

30.31.二元函數(shù)z=x2+3xy+y2+2x,則=________。

32.

33.

34.

35.

36.廣義積分.37.

38.

39.設(shè)z=sin(x2y),則=________。40.y=x3-27x+2在[1,2]上的最大值為______.三、計(jì)算題(20題)41.

42.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.43.求曲線在點(diǎn)(1,3)處的切線方程.

44.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

45.將f(x)=e-2X展開為x的冪級(jí)數(shù).46.求微分方程的通解.

47.求微分方程y"-4y'+4y=e-2x的通解.

48.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.49.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.50.51.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.52.

53.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則54.

55.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

56.57.58.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

59.

60.證明:四、解答題(10題)61.

62.

63.計(jì)算,其中D是由y=x,y=2,x=2與x=4圍成.

64.

65.

66.

67.

68.設(shè)z=z(x,y)由ez-z+xy=3所確定,求dz。

69.求∫sin(x+2)dx。

70.五、高等數(shù)學(xué)(0題)71.設(shè)

求df(t)

六、解答題(0題)72.

參考答案

1.A

2.A由于可知收斂半徑R==1.故選A。

3.B

4.Dy=ex+e-x,則y'=ex-e-x,當(dāng)x>0時(shí),y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增.

5.C

6.B

7.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.

Y=sin2x,

則y'=cos(2x)·(2x)'=2cos2x.

可知應(yīng)選D.

8.C解析:

9.A

10.D

11.D解析:

12.B

13.A

14.B

15.A

16.D

17.B本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.

因此選B.

18.C解析:

19.D

20.D解析:

21.5/222.1

23.-(1/3)e-3x+C

24.(03)

25.

26.

27.0本題考查的知識(shí)點(diǎn)為極值的必要條件.

由于y=f(x)在點(diǎn)x=0可導(dǎo),且x=0為f(x)的極值點(diǎn),由極值的必要條件可知有f'(0)=0.28.x—arctanx+C.

本題考查的知識(shí)點(diǎn)為不定積分的運(yùn)算.

29.(sinx+cosx)exdx(sinx+cosx)exdx解析:

30.4π本題考查了二重積分的知識(shí)點(diǎn)。31.因?yàn)閦=x2+3xy+y2+2x,

32.

33.

34.

35.036.1本題考查的知識(shí)點(diǎn)為廣義積分,應(yīng)依廣義積分定義求解.

37.

本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

所給級(jí)數(shù)為缺項(xiàng)情形,

38.39.設(shè)u=x2y,則z=sinu,因此=cosu.x2=x2cos(x2y)。40.-24本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.

若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),??梢岳脤?dǎo)數(shù)判定f(x)在[a,b]上的最值:

(1)求出f'(x).

(2)求出f(x)在(a,b)內(nèi)的駐點(diǎn)x1,…,xk.

(3)比較f(x1),f(x2),…,f(xk),f(a),f(b).其中最大(小)值為f(x)在[a,b]上的最大(小)值,相應(yīng)的點(diǎn)x為f(x)的最大(小)值點(diǎn).

y=x3-27x+2,

則y'=3x2-27=3(x-3)(x+3),

令y'=0得y的駐點(diǎn)x1=-3,x2=3,可知這兩個(gè)駐點(diǎn)都不在(1,2)內(nèi).

由于f(1)=-24,f(2)=-44,可知y=x3-27x+2在[1,2]上的最大值為-24.

本題考生中出現(xiàn)的錯(cuò)誤多為求出駐點(diǎn)x1=-3,x2=3之后,直接比較

f(-3)=56,f(3)=-52,f(1)=-24,f(2)=-44,

得出y=x3-27x+2在[1,2]上的最大值為f(-3)=56.其錯(cuò)誤的原因是沒有判定駐點(diǎn)x1=-3,x2=3是否在給定的區(qū)間(1,2)內(nèi),這是值得考生注意的問(wèn)題.在模擬試題中兩次出現(xiàn)這類問(wèn)題,目的就是希望能引起考生的重視.

本題還可以采用下列解法:注意到y(tǒng)'=3(x-3)(x+3),在區(qū)間[1,2]上有y'<0,因此y為單調(diào)減少函數(shù)??芍?/p>

x=2為y的最小值點(diǎn),最小值為y|x=2=-44.

x=1為y的最大值點(diǎn),最大值為y|x=1=-24.

41.

42.

43.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

44.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

45.

46.

47.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

48.由二重積分物理意義知

49.函數(shù)的定義域?yàn)?/p>

注意

50.

51.

52.由一階線性微分方程通解公式有

53.由等價(jià)無(wú)窮小量的定義可知

54.

55.

56.

57.

58.

列表:

說(shuō)明

59.

60.

61.

解法1利用等價(jià)無(wú)窮小量代換.

解法2利用洛必達(dá)法則

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論