版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年內(nèi)蒙古自治區(qū)興安盟成考專升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.
2.
3.滑輪半徑,一0.2m,可繞水平軸0轉(zhuǎn)動(dòng),輪緣上纏有不可伸長(zhǎng)的細(xì)繩,繩的一端掛有物體A,如圖所示。已知滑輪繞軸0的轉(zhuǎn)動(dòng)規(guī)律為φ=0.15t3rad,其中t單位為s。當(dāng)t-2s時(shí),輪緣上M點(diǎn)速度、加速度和物體A的速度、加速度計(jì)算不正確的是()。
A.M點(diǎn)的速度為VM=0.36m/s
B.M點(diǎn)的加速度為aM=0.648m/s2
C.物體A的速度為VA=0.36m/s
D.物體A點(diǎn)的加速度為aA=0.36m/s2
4.()A.A.1B.2C.1/2D.-1
5.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f(-1)=0,當(dāng)x<-1時(shí),f(x)<0;當(dāng)x>-1時(shí),f(x)>0.則下列結(jié)論肯定正確的是().
A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)
6.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
7.
8.設(shè)函數(shù)f(x)在區(qū)間[0,1]上可導(dǎo),且f(x)>0,則()
A.f(1)>f(0)B.f(1)<f(0)C.f(1)=f(0)D.f(1)與f(0)的值不能比較
9.A.0或1B.0或-1C.0或2D.1或-1
10.設(shè)y=2-cosx,則y'=
A.1-sinxB.1+sinxC.-sinxD.sinx
11.方程y"+3y'=x2的待定特解y*應(yīng)取().A.A.AxB.Ax2+Bx+CC.Ax2D.x(Ax2+Bx+C)
12.
13.
14.
15.下面哪個(gè)理論關(guān)注下屬的成熟度()
A.管理方格B.路徑—目標(biāo)理論C.領(lǐng)導(dǎo)生命周期理論D.菲德勒權(quán)變理論16.A.沒(méi)有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線
17.
18.
19.A.A.
B.0
C.
D.1
20.
21.
22.
23.
24.
25.在初始發(fā)展階段,國(guó)際化經(jīng)營(yíng)的主要方式是()
A.直接投資B.進(jìn)出口貿(mào)易C.間接投資D.跨國(guó)投資
26.
27.A.
B.
C.
D.
28.()。A.e-6
B.e-2
C.e3
D.e6
29.設(shè)f(x)=e3x,則在x=0處的二階導(dǎo)數(shù)f"(0)=A.A.3B.6C.9D.9e
30.
31.
32.A.A.
B.
C.
D.
33.
34.
35.
36.
37.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解38.當(dāng)x→0時(shí),x2是2x的A.A.低階無(wú)窮小B.等價(jià)無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.高階無(wú)窮小
39.
40.A.-2(1-x2)2+C
B.2(1-x2)2+C
C.
D.
41.函數(shù)y=sinx在區(qū)間[0,n]上滿足羅爾定理的ξ=A.A.0B.π/4C.π/2D.π
42.
43.
44.設(shè)在點(diǎn)x=1處連續(xù),則a等于()。A.-1B.0C.1D.245.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.
B.
C.
D.
46.A.A.小于0B.大于0C.等于0D.不確定
47.
A.1B.0C.-1D.-2
48.
49.A.A.0B.1C.2D.任意值
50.
二、填空題(20題)51.52.
53.
54.55.
56.
57.設(shè)區(qū)域D:x2+y2≤a2,x≥0,則
58.
59.
60.
61.
62.微分方程dy+xdx=0的通解為y=__________.
63.64.65.設(shè)y=x2+e2,則dy=________66.若f'(x0)=1,f(x0)=0,則
67.
68.
69.70.三、計(jì)算題(20題)71.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.72.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.73.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
74.求微分方程y"-4y'+4y=e-2x的通解.
75.證明:76.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
77.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
78.79.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).80.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
81.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則82.求曲線在點(diǎn)(1,3)處的切線方程.83.84.
85.
86.
87.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).88.89.求微分方程的通解.90.
四、解答題(10題)91.
92.93.
94.
95.96.將f(x)=ln(1+x2)展開(kāi)為x的冪級(jí)數(shù).97.求由曲線y=x2(x≥0),直線y=1及Y軸圍成的平面圖形的面積·
98.
99.
100.
五、高等數(shù)學(xué)(0題)101.求
六、解答題(0題)102.求由曲線y=2-x2,y=2x-1及x≥0圍成的平面圖形的面積S,以及此平面圖形繞x軸旋轉(zhuǎn)所成旋轉(zhuǎn)體的體積.
參考答案
1.C
2.D
3.B
4.C由于f'(2)=1,則
5.C本題考查的知識(shí)點(diǎn)為極值的第-充分條件.
由f(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí)f(x)<0;當(dāng)x>-1時(shí),
f(x)>1,由極值的第-充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.
6.B如果y1,y2這兩個(gè)特解是線性無(wú)關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒(méi)有指出是否線性無(wú)關(guān),所以可能是通解,也可能不是通解,故選B。
7.C
8.A由f"(x)>0說(shuō)明f(x)在[0,1]上是增函數(shù),因?yàn)?>0,所以f(1)>f(0)。故選A。
9.A
10.D解析:y=2-cosx,則y'=2'-(cosx)'=sinx。因此選D。
11.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性微分方程特解y*的取法.
由于相應(yīng)齊次方程為y"+3y'0,
其特征方程為r2+3r=0,
特征根為r1=0,r2=-3,
自由項(xiàng)f(x)=x2,相應(yīng)于Pn(x)eαx中α=0為單特征根,因此應(yīng)設(shè)
故應(yīng)選D.
12.C
13.A
14.D
15.C解析:領(lǐng)導(dǎo)生命周期理論關(guān)注下屬的成熟度。
16.D本題考查了曲線的漸近線的知識(shí)點(diǎn),
17.B
18.C解析:
19.D本題考查的知識(shí)點(diǎn)為拉格朗日中值定理的條件與結(jié)論.
可知應(yīng)選D.
20.D
21.D
22.B
23.B
24.B
25.B解析:在初始投資階段,企業(yè)從事國(guó)際化經(jīng)營(yíng)活動(dòng)的主要特點(diǎn)是活動(dòng)方式主要以進(jìn)出口貿(mào)易為主。
26.C
27.C
28.A
29.Cf(x)=e3x,f'(x)=3e3x,f"(x)=9e3x,f"(0)=9,因此選C。
30.A
31.C
32.D
33.C
34.B
35.D
36.C
37.B本題考查的知識(shí)點(diǎn)為線性常系數(shù)微分方程解的結(jié)構(gòu).
已知y1,y2為二階線性常系數(shù)齊次微分方程y"+p1y'+p2y=0的兩個(gè)解,由解的結(jié)構(gòu)定理可知C1y1+C2y2為所給方程的解,因此應(yīng)排除D.又由解的結(jié)構(gòu)定理可知,當(dāng)y1,y2線性無(wú)關(guān)時(shí),C1y1+C2y2為y"+p1y'+p2y=0的通解,因此應(yīng)該選B.
本題中常見(jiàn)的錯(cuò)誤是選C.這是由于忽略了線性常系數(shù)微分方程解的結(jié)構(gòu)定理中的條件所導(dǎo)致的錯(cuò)誤.解的結(jié)構(gòu)定理中指出:“若y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個(gè)線性無(wú)關(guān)的特解,則C1y1+C2y2為所給微分方程的通解,其中C1,C2為任意常數(shù).”由于所給命題中沒(méi)有指出)y1,y2為線性無(wú)關(guān)的特解,可知C1y1+C2y2不一定為方程的通解.但是由解的結(jié)構(gòu)定理知C1y1+C2y2為方程的解,因此應(yīng)選B.
38.D
39.B
40.C
41.Cy=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),sin0=sinπ=0,可
知y=sinx在[0,π]上滿足羅爾定理,由于(sinx)'=cosx,可知ξ=π/2時(shí),cosξ=0,因此選C。
42.D
43.D
44.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。
由于y為分段函數(shù),x=1為其分段點(diǎn)。在x=1的兩側(cè)f(x)的表達(dá)式不同。因此討論y=f(x)在x=1處的連續(xù)性應(yīng)該利用左連續(xù)與右連續(xù)的概念。由于
當(dāng)x=1為y=f(x)的連續(xù)點(diǎn)時(shí),應(yīng)有存在,從而有,即
a+1=2。
可得:a=1,因此選C。
45.C
46.C
47.A
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)公式.
可知應(yīng)選A.
48.C
49.B
50.A
51.52.
53.11解析:
54.e255.12dx+4dy.
本題考查的知識(shí)點(diǎn)為求函數(shù)在一點(diǎn)處的全微分.
56.x(asinx+bcosx)
57.
解析:本題考查的知識(shí)點(diǎn)為二重積分的性質(zhì).
58.
59.6x2
60.
61.(-33)(-3,3)解析:
62.
63.
64.1/z本題考查了二元函數(shù)的二階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。65.(2x+e2)dx66.-1
67.3x2+4y
68.2
69.9070.1.
本題考查的知識(shí)點(diǎn)為函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義.
由于f(1)=2,可知
71.
72.函數(shù)的定義域?yàn)?/p>
注意
73.由二重積分物理意義知
74.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
75.
76.
77.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
78.
79.
列表:
說(shuō)明
80.
81.由等價(jià)無(wú)窮小量的定義可知82.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
83.
84.
則
85.
86.
87.
88.
89.90.由一階線性微分方程通解公式有
91.
92.
93.
94.
95.
96.由于
因此
本題考查的知識(shí)點(diǎn)為將函數(shù)展開(kāi)為冪級(jí)數(shù).
綱中指出“會(huì)運(yùn)用ex,sinx,cosx,ln(1+x),的麥克勞林展開(kāi)式,將一些簡(jiǎn)單的初等函數(shù)展開(kāi)為x或(x-x0)的冪級(jí)數(shù).”這表明本題應(yīng)該將ln(1+x2)變形認(rèn)作ln(1+x)的形式,利用間接法展開(kāi)為x的冪級(jí)數(shù).
本題中考生出現(xiàn)的常見(jiàn)錯(cuò)誤是對(duì)ln(1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度床墊行業(yè)展會(huì)參展商采購(gòu)合同3篇
- 2024版航天器發(fā)射與數(shù)據(jù)服務(wù)合同
- 2024版臨時(shí)工合同協(xié)議書(shū)范文
- 2024年軟件開(kāi)發(fā)購(gòu)銷合同
- 個(gè)人借款協(xié)議模板2024專業(yè)版版B版
- 二零二五版二手房買賣合同公證服務(wù)合同規(guī)范與執(zhí)行2篇
- 2024版股權(quán)激勵(lì)合同2篇
- 二零二五版房屋買賣更名與配套設(shè)施移交協(xié)議3篇
- 二零二五年度環(huán)保項(xiàng)目墊資合同范本2篇
- 2024幼兒園幼兒教師聘任與勞動(dòng)合同書(shū)3篇
- 2024-2025學(xué)年成都高新區(qū)七上數(shù)學(xué)期末考試試卷【含答案】
- 定額〔2025〕1號(hào)文-關(guān)于發(fā)布2018版電力建設(shè)工程概預(yù)算定額2024年度價(jià)格水平調(diào)整的通知
- 2025年浙江杭州市西湖區(qū)專職社區(qū)招聘85人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 《數(shù)學(xué)廣角-優(yōu)化》說(shuō)課稿-2024-2025學(xué)年四年級(jí)上冊(cè)數(shù)學(xué)人教版
- “懂你”(原題+解題+范文+話題+技巧+閱讀類素材)-2025年中考語(yǔ)文一輪復(fù)習(xí)之寫(xiě)作
- 2025年景觀照明項(xiàng)目可行性分析報(bào)告
- 2025年江蘇南京地鐵集團(tuán)招聘筆試參考題庫(kù)含答案解析
- 2025年度愛(ài)讀書(shū)學(xué)長(zhǎng)參與的讀書(shū)項(xiàng)目投資合同
- 電力系統(tǒng)分析答案(吳俊勇)(已修訂)
- 化學(xué)-河北省金太陽(yáng)質(zhì)檢聯(lián)盟2024-2025學(xué)年高三上學(xué)期12月第三次聯(lián)考試題和答案
- 期末復(fù)習(xí)試題(試題)-2024-2025學(xué)年四年級(jí)上冊(cè)數(shù)學(xué) 北師大版
評(píng)論
0/150
提交評(píng)論