版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年湖北省黃石市成考專(zhuān)升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.用多頭鉆床在水平放置的工件上同時(shí)鉆四個(gè)直徑相同的孔,如圖所示,每個(gè)鉆頭的切屑力偶矩為M1=M2=M3=M4=一15N·m,則工件受到的總切屑力偶矩為()。
A.30N·m,逆時(shí)針?lè)较駼.30N·m,順時(shí)針?lè)较駽.60N·m,逆時(shí)針?lè)较駾.60N·m,順時(shí)針?lè)较?/p>
2.
3.f(x)是可積的偶函數(shù),則是()。A.偶函數(shù)B.奇函數(shù)C.非奇非偶D.可奇可偶
4.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2
5.A.A.
B.
C.
D.
6.設(shè)z=ln(x2+y),則等于()。A.
B.
C.
D.
7.
8.
9.
A.2B.1C.1/2D.0
10.下列各式中正確的是
A.A.
B.B.
C.C.
D.D.
11.A.A.-sinx
B.cosx
C.
D.
12.設(shè)f(x),g(x)在[a,b]上連續(xù),則()。
A.若,則在[a,b]上f(x)=0
B.若,則在[a,b]上f(x)=g(x)
C.若a<c<d<b,則
D.若f(x)≤g(z),則
13.A.0
B.1
C.e
D.e2
14.
15.微分方程y"-y'=0的通解為()。A.
B.
C.
D.
16.微分方程(y)2=x的階數(shù)為()A.1B.2C.3D.4
17.平面x+y一3z+1=0與平面2x+y+z=0相互關(guān)系是()。
A.斜交B.垂直C.平行D.重合
18.設(shè)f(x)=1-cos2x,g(x)=x2,則當(dāng)x→0時(shí),比較無(wú)窮小量f(x)與g(x),有
A.f(x)對(duì)于g(x)是高階的無(wú)窮小量
B.f(x)對(duì)于g(x)是低階的無(wú)窮小量
C.f(x)與g(x)為同階無(wú)窮小量,但非等價(jià)無(wú)窮小量
D.f(x)與g(x)為等價(jià)無(wú)窮小量
19.
20.如圖所示兩楔形塊A、B自重不計(jì),二者接觸面光滑,受大小相等、方向相反且沿同一直線的兩個(gè)力的作用,則()。
A.A平衡,B不平衡B.A不平衡,B平衡C.A、B均不平衡D.A、B均平衡21.設(shè)y=f(x)為可導(dǎo)函數(shù),則當(dāng)△x→0時(shí),△y-dy為△x的A.A.高階無(wú)窮小B.等價(jià)無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.低階無(wú)窮小
22.
23.A.A.
B.
C.
D.
24.A.A.1/3B.3/4C.4/3D.3
25.
26.
27.
28.
A.2x+1B.2xy+1C.x2+1D.2xy29.
30.
31.方程y'-3y'+2y=xe2x的待定特解y*應(yīng)取().A.A.Axe2x
B.(Ax+B)e2x
C.Ax2e2x
D.x(Ax+B)e2x
32.
33.
34.
35.A.1/x2
B.1/x
C.e-x
D.1/(1+x)2
36.圖示結(jié)構(gòu)中,F(xiàn)=10N,I為圓桿,直徑d=15mm,2為正方形截面桿,邊長(zhǎng)為a=20mm,α=30。,則各桿強(qiáng)度計(jì)算有誤的一項(xiàng)為()。
A.1桿受拉20kNB.2桿受壓17.3kNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa
37.
38.A.2/5B.0C.-2/5D.1/2
39.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為
A.2B.-2C.3D.-3
40.
41.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
42.A.有一個(gè)拐點(diǎn)B.有兩個(gè)拐點(diǎn)C.有三個(gè)拐點(diǎn)D.無(wú)拐點(diǎn)
43.
44.設(shè)y=2^x,則dy等于().
A.x.2x-1dx
B.2x-1dx
C.2xdx
D.2xln2dx
45.設(shè)函數(shù)y=(2+x)3,則y'=
A.(2+x)2
B.3(2+x)2
C.(2+x)4
D.3(2+x)4
46.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,447.A.-cosxB.-ycosxC.cosxD.ycosx48.下列關(guān)系正確的是()。A.
B.
C.
D.
49.A.A.e-x+CB.-e-x+CC.ex+CD.-ex+C
50.
A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)二、填空題(20題)51.52.
53.54.55.56.設(shè)f(x)=esinx,則=________。57.58.
59.
60.
61.
62.63.64.
65.設(shè)f(x)=sin(lnx),求f(x)=__________.
66.
67.68.69.微分方程y"=y的通解為_(kāi)_____.
70.
三、計(jì)算題(20題)71.
72.
73.
74.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.75.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
76.
77.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則78.求曲線在點(diǎn)(1,3)處的切線方程.79.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
80.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
81.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.82.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.83.證明:
84.求微分方程y"-4y'+4y=e-2x的通解.
85.求微分方程的通解.86.87.88.
89.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
90.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).四、解答題(10題)91.
92.
93.
94.設(shè)y=e-3x+x3,求y'。
95.求函數(shù)的二階導(dǎo)數(shù)y''
96.
97.求由曲線y=x,y=lnx及y=0,y=1圍成的平面圖形的面積S及此平面圖形繞y軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體體積.98.所圍成的平面區(qū)域。
99.
100.
五、高等數(shù)學(xué)(0題)101.求df(x)。六、解答題(0題)102.
參考答案
1.D
2.C解析:
3.Bf(x)是可積的偶函數(shù);設(shè)令t=-u,是奇函數(shù)。
4.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。
5.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.是關(guān)于y的冪函數(shù),因此故應(yīng)選D.
6.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。
7.A
8.C
9.D本題考查的知識(shí)點(diǎn)為重要極限公式與無(wú)窮小量的性質(zhì).
10.B本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)。
對(duì)于選項(xiàng)A,當(dāng)0<x<1時(shí),x3<x2,則。對(duì)于選項(xiàng)B,當(dāng)1<x<2時(shí),Inx>(Inx)2,則。對(duì)于選項(xiàng)C,對(duì)于選讀D,不成立,因?yàn)楫?dāng)x=0時(shí),1/x無(wú)意義。
11.C本題考查的知識(shí)點(diǎn)為基本導(dǎo)數(shù)公式.
可知應(yīng)選C.
12.D由定積分性質(zhì):若f(x)≤g(x),則
13.B為初等函數(shù),且點(diǎn)x=0在的定義區(qū)間內(nèi),因此,故選B.
14.D解析:
15.B本題考查的知識(shí)點(diǎn)為二階常系數(shù)齊次微分方程的求解。微分方程為y"-y'=0特征方程為r2-r=0特征根為r1=1,r2=0方程的通解為y=C1ex+c2可知應(yīng)選B。
16.A
17.Bπ1x+y一3z+1=0的法向量n1=(1,1,一3)π2:2x+y+z=0的法向量n2=(2,1,1)∵n1.n2=(1,1,一3).(2,1,1)=0∵n1⊥n2;∴π1⊥π2
18.C
19.A解析:
20.C
21.A由微分的定義可知△y=dy+o(△x),因此當(dāng)△x→0時(shí)△y-dy=o(△x)為△x的高階無(wú)窮小,因此選A。
22.B
23.B本題考查的知識(shí)點(diǎn)為可導(dǎo)性的定義.當(dāng)f(x)在x=1處可導(dǎo)時(shí),由導(dǎo)數(shù)定義可得
24.B
25.B解析:
26.D
27.C
28.B
29.D
30.D
31.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性非齊次微分方程特解y*的取法:
若自由項(xiàng)f(x)=Pn(x)eαx,當(dāng)α不為特征根時(shí),可設(shè)特解為
y*=Qn(x)eαx,
Qn(x)為x的待定n次多項(xiàng)式.
當(dāng)α為單特征根時(shí),可設(shè)特解為
y*=xQn(x)eαx,
當(dāng)α為二重特征根時(shí),可設(shè)特解為
y*=x2Qn(x)eαx.
所給方程對(duì)應(yīng)齊次方程的特征方程為
r2-3r+2=0.
特征根為r1=1,r2=2.
自由項(xiàng)f(x)=xe2x,相當(dāng)于α=2為單特征根.又因?yàn)镻n(x)為一次式,因此應(yīng)選D.
32.D
33.A
34.D解析:
35.A本題考查了反常積分的斂散性的知識(shí)點(diǎn)。
36.C
37.C
38.A本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)
39.C解析:
40.B
41.B如果y1,y2這兩個(gè)特解是線性無(wú)關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒(méi)有指出是否線性無(wú)關(guān),所以可能是通解,也可能不是通解,故選B。
42.D
43.B
44.D南微分的基本公式可知,因此選D.
45.B本題考查了復(fù)合函數(shù)求導(dǎo)的知識(shí)點(diǎn)。因?yàn)閥=(2+x)3,所以y'=3(2+x)2·(2+x)'=3(2+x)2.
46.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.
47.C本題考查的知識(shí)點(diǎn)為二階偏導(dǎo)數(shù)。由于z=y(tǒng)sinx,因此可知應(yīng)選C。
48.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)。
49.B
50.C
本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).
51.
52.
53.
54.55.本題考查的知識(shí)點(diǎn)為:求解可分離變量的微分方程.56.由f(x)=esinx,則f"(x)=cosxesinx。再根據(jù)導(dǎo)數(shù)定義有=cosπesinπ=-1。57.3yx3y-1
58.
本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
59.
解析:
60.
61.
62.
63.64.1.
本題考查的知識(shí)點(diǎn)為二元函數(shù)的極值.
可知點(diǎn)(0,0)為z的極小值點(diǎn),極小值為1.
65.
66.67.f(0).
本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由于f(0)=0,f(0)存在,因此
本題如果改為計(jì)算題,其得分率也會(huì)下降,因?yàn)橛行┛忌33霈F(xiàn)利用洛必達(dá)法則求極限而導(dǎo)致運(yùn)算錯(cuò)誤:
因?yàn)轭}設(shè)中只給出f(0)存在,并沒(méi)有給出f(x)(x≠0)存在,也沒(méi)有給出f(x)連續(xù)的條件,因此上述運(yùn)算的兩步都錯(cuò)誤.
68.69.y'=C1e-x+C2ex
;本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性齊次微分方程的求解.
將方程變形,化為y"-y=0,
特征方程為r2-1=0;
特征根為r1=-1,r2=1.
因此方程的通解為y=C1e-x+C2ex.
70.71.由一階線性微分方程通解公式有
72.
73.74.由二重積分物理意義知
75.
76.
77.由等價(jià)無(wú)窮小量的定義可知78.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
79.
列表:
說(shuō)明
80.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- JJF(陜) 015-2019 防雷元件測(cè)試儀校準(zhǔn)規(guī)范
- 基金管理委托合同三篇
- 城市綠化景觀工程設(shè)計(jì)招標(biāo)合同三篇
- 探索急診科室青少年護(hù)理需求計(jì)劃
- 美容行業(yè)的產(chǎn)品推廣與營(yíng)銷(xiāo)計(jì)劃
- 2024-2025學(xué)年年七年級(jí)數(shù)學(xué)人教版下冊(cè)專(zhuān)題整合復(fù)習(xí)卷28.1 銳角三角函數(shù)(3)(含答案)
- 物業(yè)清潔保潔承攬合同三篇
- 項(xiàng)目成功因素的分析與總結(jié)計(jì)劃
- 《政策新解》課件
- 玩具制造委托合同三篇
- ecmo治療暴發(fā)性心肌炎的
- 教科版六年級(jí)下冊(cè)科學(xué)第一單元《小小工程師》教材分析及全部教案(定稿;共7課時(shí))
- 《小豬唏哩呼?!烽喿x版
- 《基因工程疫苗》課件
- K線圖入門(mén)教程大全一
- 2024年法律知識(shí)法治建設(shè)知識(shí)競(jìng)賽-中醫(yī)藥行業(yè)普法知識(shí)競(jìng)賽歷年考試高頻考點(diǎn)試題附帶答案
- 區(qū)塊鏈技術(shù)在IT運(yùn)維中的應(yīng)用
- 《寬容開(kāi)放兼容并蓄》課件
- 廣西壯族自治區(qū)南寧市2023-2024學(xué)年五年級(jí)上學(xué)期期末英語(yǔ)試題
- 2024螺桿灌注樁技術(shù)規(guī)程
- 客人醉酒服務(wù)流程
評(píng)論
0/150
提交評(píng)論