版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年遼寧省撫順市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(50題)1.A.A.
B.
C.
D.
2.
3.
4.A.A.sinx+sin2B.-sinx+sin2C.sinxD.-sinx
5.
6.
7.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f(-1)=0,當(dāng)x<-1時,f(x)<0;當(dāng)x>-1時,f(x)>0.則下列結(jié)論肯定正確的是().
A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)
8.
9.
10.下列命題中正確的有()A.A.
B.
C.
D.
11.方程z=x2+y2表示的二次曲面是().
A.球面
B.柱面
C.圓錐面
D.拋物面
12.
13.A.e2
B.e-2
C.1D.014.如圖所示,在乎板和受拉螺栓之間墊上一個墊圈,可以提高()。
A.螺栓的拉伸強(qiáng)度B.螺栓的剪切強(qiáng)度C.螺栓的擠壓強(qiáng)度D.平板的擠壓強(qiáng)度
15.設(shè)f(x)在點(diǎn)x0處取得極值,則()
A.f"(x0)不存在或f"(x0)=0
B.f"(x0)必定不存在
C.f"(x0)必定存在且f"(x0)=0
D.f"(x0)必定存在,不一定為零
16.
17.下列關(guān)于構(gòu)建的幾何形狀說法不正確的是()。
A.軸線為直線的桿稱為直桿B.軸線為曲線的桿稱為曲桿C.等截面的直桿稱為等直桿D.橫截面大小不等的桿稱為截面桿18.方程x2+y2-z=0表示的二次曲面是()。A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面19.設(shè)x是f(x)的一個原函數(shù),則f(x)=A.A.x2/2B.2x2
C.1D.C(任意常數(shù))20.()。A.e-6
B.e-2
C.e3
D.e6
21.
22.
23.
24.A.
B.
C.
D.
25.
26.
27.已知斜齒輪上A點(diǎn)受到另一齒輪對它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過A點(diǎn)的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計(jì)算有誤的是()。
A.圓周力FT=Fncosαcosβ
B.徑向力Fa=Fncosαcosβ
C.軸向力Fr=Fncosα
D.軸向力Fr=Fnsinα
28.
29.
30.
31.
32.
33.
34.
35.
36.設(shè)a={-1,1,2),b={3,0,4},則向量a在向量b上的投影為()A.A.
B.1
C.
D.-1
37.A.A.2xy3
B.2xy3-1
C.2xy3-siny
D.2xy3-siny-1
38.若收斂,則下面命題正確的是()A.A.
B.
C.
D.
39.平衡物體發(fā)生自鎖現(xiàn)象的條件為()。
A.0≤α≤φ
B.0≤φ≤α
C.0<α<90。
D.0<φ<90。
40.
41.
42.A.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與口有關(guān)43.A.A.2B.-1/2C.1/2eD.(1/2)e1/2
44.
45.A.dx+dyB.1/3·(dx+dy)C.2/3·(dx+dy)D.2(dx+dy)46.()A.A.發(fā)散B.條件收斂C.絕對收斂D.斂散性不能確定
47.
48.設(shè)函數(shù)y=(2+x)3,則y'=
A.(2+x)2
B.3(2+x)2
C.(2+x)4
D.3(2+x)4
49.
A.必定存在且值為0B.必定存在且值可能為0C.必定存在且值一定不為0D.可能不存在
50.
二、填空題(20題)51.
52.53.54.設(shè)y=sin(2+x),則dy=.55.
56.
57.過點(diǎn)Mo(1,-1,0)且與平面x-y+3z=1平行的平面方程為_______.58.59.若=-2,則a=________。60.
61.
62.63.
64.
65.
66.微分方程y'+4y=0的通解為_________。
67.68.
69.
70.
三、計(jì)算題(20題)71.將f(x)=e-2X展開為x的冪級數(shù).72.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.73.當(dāng)x一0時f(x)與sin2x是等價(jià)無窮小量,則74.求微分方程的通解.75.證明:76.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.77.
78.
79.
80.
81.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
82.求曲線在點(diǎn)(1,3)處的切線方程.
83.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價(jià)格上漲1%,需求量增(減)百分之幾?
84.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.85.
86.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
87.求微分方程y"-4y'+4y=e-2x的通解.
88.89.
90.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.四、解答題(10題)91.用洛必達(dá)法則求極限:
92.
93.
94.
95.求xyy=1-x2的通解.
96.y=xlnx的極值與極值點(diǎn).
97.設(shè)f(x)為連續(xù)函數(shù),且98.在曲線上求一點(diǎn)M(x,y),使圖9-1中陰影部分面積S1,S2之和S1+S2最?。?/p>
99.將周長為12的矩形繞其一邊旋轉(zhuǎn)得一圓柱體,問繞邊長為多少的邊旋轉(zhuǎn)才能使圓柱體的體積最大?
100.求函數(shù)y=xex的極小值點(diǎn)與極小值。五、高等數(shù)學(xué)(0題)101.若在(a,b)內(nèi)f'(x)<0,f''(x)<0,則f(x)在(a,b)內(nèi)()。A.單減,凸B.單增,凹C.單減,凹D.單增,凸六、解答題(0題)102.
參考答案
1.D本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.
可知應(yīng)選D.
2.C解析:
3.B
4.D
5.C解析:
6.D
7.C本題考查的知識點(diǎn)為極值的第-充分條件.
由f(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時f(x)<0;當(dāng)x>-1時,
f(x)>1,由極值的第-充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.
8.C
9.C
10.B
11.D對照標(biāo)準(zhǔn)二次曲面的方程可知z=x2+y2表示的二次曲面是拋物面,故選D.
12.B
13.A
14.D
15.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。
16.D
17.D
18.C本題考查的知識點(diǎn)為二次曲面的方程。
將x2+y2-z=0與二次曲面標(biāo)準(zhǔn)方程對照,可知其為旋轉(zhuǎn)拋面,故應(yīng)選C。
19.Cx為f(x)的一個原函數(shù),由原函數(shù)定義可知f(x)=x'=1,故選C。
20.A
21.A
22.D
23.B
24.B
25.A
26.A
27.C
28.A解析:
29.C解析:
30.D
31.D
32.B
33.D
34.C解析:
35.B解析:
36.B
37.A
38.D本題考查的知識點(diǎn)為級數(shù)的基本性質(zhì).
由級數(shù)收斂的必要條件:若收斂,則必有,可知D正確.而A,B,C都不正確.
本題常有考生選取C,這是由于考生將級數(shù)收斂的定義存在,其中誤認(rèn)作是un,這屬于概念不清楚而導(dǎo)致的錯誤.
39.A
40.B
41.D解析:
42.A
43.B
44.D
45.C本題考查了二元函數(shù)的全微分的知識點(diǎn),
46.C
47.C
48.B本題考查了復(fù)合函數(shù)求導(dǎo)的知識點(diǎn)。因?yàn)閥=(2+x)3,所以y'=3(2+x)2·(2+x)'=3(2+x)2.
49.B
50.D
51.dx
52.本題考查的知識點(diǎn)為定積分運(yùn)算.
53.3本題考查了冪級數(shù)的收斂半徑的知識點(diǎn).
所以收斂半徑R=3.54.cos(2+x)dx
這類問題通常有兩種解法.
解法1
因此dy=cos(2+x)dx.
解法2利用微分運(yùn)算公式
dy=d(sin(2+x))=cos(2+x)·d(2+x)=cos(2+x)dx.
55.
56.22解析:57.由于已知平面的法線向量,所求平面與已知平面平行,可取所求平面法線向量,又平面過點(diǎn)Mo(1,-1,0),由平面的點(diǎn)法式方程可知,所求平面為58.059.因?yàn)?a,所以a=-2。60.本題考查的知識點(diǎn)為冪級數(shù)的收斂半徑.所給級數(shù)為缺項(xiàng)情形,由于
61.
解析:
62.31/16;2本題考查了函數(shù)的最大、最小值的知識點(diǎn).
f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因?yàn)閍>0,所以f"(0)<0,所以x=0是極值點(diǎn).又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因?yàn)閍>0,故當(dāng)x=0時,f(x)最大,即b=2;當(dāng)x=2時,f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=31/16.
63.
64.
65.
解析:
66.y=Ce-4x
67.
本題考查的知識點(diǎn)為二重積分的計(jì)算.
68.0.
本題考查的知識點(diǎn)為定積分的性質(zhì).
積分區(qū)間為對稱區(qū)間,被積函數(shù)為奇函數(shù),因此
69.y-2=3(x-1)(或?qū)憺閥=3x-1)y-2=3(x-1)(或?qū)憺閥=3x-1)解析:
70.
71.72.函數(shù)的定義域?yàn)?/p>
注意
73.由等價(jià)無窮小量的定義可知
74.
75.
76.
77.
78.
79.
80.
81.
82.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
83.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價(jià)格上漲1%需求量減少2.5%
84.
85.
則
86.
列表:
說明
87.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
88.89.由一階線性微分方程通解公式有
90.由二重積分物理意義知
91.
92.
93.
94.
95.解先將方程分離變量,得
即為原方程的通解,其中c為不等于零的任意常數(shù).
96.y=xlnx的定義域?yàn)閤>0y'=1+lnx.令y'=0得駐點(diǎn)x1=e-1.當(dāng)0<x<e-1時y'<0;當(dāng)e-1<x時y'>0.可知x=e-1為y=xlnx的極小值點(diǎn).極小值為y=xlnx的定義域?yàn)閤>0y'=1+lnx.令y'=0得駐點(diǎn)x1=e-1.當(dāng)0<x<e-1時,y'<0;當(dāng)e-1<x時,y'>0.可知x=e-1為y=xlnx的極小值點(diǎn).極小值為97.設(shè),則f(x)=x3+3Ax.將上式兩端在[0,1]上積分,得
因此
本題考查的知識點(diǎn)為兩個:定積分表示一個確定的數(shù)值;計(jì)算定積
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年高端裝備制造研發(fā)合同
- 2025年度二零二五木坑果場承包經(jīng)營與農(nóng)產(chǎn)品出口合同3篇
- 2024建材銷售合作協(xié)議書范本
- 2024虛擬現(xiàn)實(shí)游戲內(nèi)容制作及授權(quán)合同
- 2024年電廠煤炭供應(yīng)與支付條款標(biāo)準(zhǔn)協(xié)議版B版
- 2024年跨境電商倉儲物流合同
- 2024年項(xiàng)目投資與合作合同
- 2025年度智能家居系統(tǒng)設(shè)計(jì)與裝修合同范本3篇
- 2025便利店品牌授權(quán)與區(qū)域管理合同范本3篇
- 2024年環(huán)保項(xiàng)目投資合同投資金額與環(huán)保效果
- 幼兒園安保培訓(xùn)記錄表2018年秋
- 浙江國輻環(huán)保科技中心放射性同位素銷售項(xiàng)目環(huán)境影響報(bào)告
- 保障房出租運(yùn)營方案
- 高血壓急癥的急救與護(hù)理pt
- 【表格】新員工崗前培訓(xùn)記錄表
- 醫(yī)學(xué)倫理學(xué)-南方醫(yī)科大學(xué)中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
- 醫(yī)療安全(不良)事件總結(jié)分析會議記錄
- 建筑用砂采石場安全生產(chǎn)綜合應(yīng)急預(yù)案
- 自來水廠水廠自控方案
- 2023-2024學(xué)年浙江省義烏市小學(xué)語文五年級期末自測考試題附參考答案和詳細(xì)解析
- 房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)、預(yù)防措施、追責(zé)建議
評論
0/150
提交評論