2023年內(nèi)蒙古自治區(qū)烏蘭察布市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第1頁(yè)
2023年內(nèi)蒙古自治區(qū)烏蘭察布市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第2頁(yè)
2023年內(nèi)蒙古自治區(qū)烏蘭察布市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第3頁(yè)
2023年內(nèi)蒙古自治區(qū)烏蘭察布市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第4頁(yè)
2023年內(nèi)蒙古自治區(qū)烏蘭察布市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年內(nèi)蒙古自治區(qū)烏蘭察布市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.方程x2+y2-z=0表示的二次曲面是()。A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面3.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)

4.

5.

A.6xarctanx2

B.6xtanx2+5

C.5

D.6xcos2x

6.設(shè)等于()A.A.-1B.1C.-cos1D.1-cos1

7.績(jī)效評(píng)估的第一個(gè)步驟是()

A.確定特定的績(jī)效評(píng)估目標(biāo)B.確定考評(píng)責(zé)任者C.評(píng)價(jià)業(yè)績(jī)D.公布考評(píng)結(jié)果,交流考評(píng)意見(jiàn)

8.設(shè)函數(shù)f(x)=(1+x)ex,則函數(shù)f(x)()。

A.有極小值B.有極大值C.既有極小值又有極大值D.無(wú)極值9.

10.等于()。A.-1B.-1/2C.1/2D.111.

12.若y(x-1)=x2-1,則y'(x)等于()A.2x+2B.x(x+1)C.x(x-1)D.2x-113.A.-cosxB.-ycosxC.cosxD.ycosx

14.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。

A.充要條件B.充分條件C.必要條件D.無(wú)關(guān)條件15.

16.

17.

18.鋼筋混凝土軸心受拉構(gòu)件正截面承載力計(jì)算時(shí),用以考慮縱向彎曲彎曲影響的系數(shù)是()。

A.偏心距增大系數(shù)B.可靠度調(diào)整系數(shù)C.結(jié)構(gòu)重要性系數(shù)D.穩(wěn)定系數(shù)

19.平衡物體發(fā)生自鎖現(xiàn)象的條件為()。

A.0≤α≤φ

B.0≤φ≤α

C.0<α<90。

D.0<φ<90。

20.

二、填空題(20題)21.22.級(jí)數(shù)的收斂半徑為_(kāi)_____.23.

24.

25.26.

27.

28.

29.

30.

sint2dt=________。31.

32.

33.

34.

35.設(shè)區(qū)域D由曲線y=x2,y=x圍成,則二重積分

36.

37.

38.39.交換二重積分次序=______.40.三、計(jì)算題(20題)41.42.

43.

44.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).45.46.求微分方程的通解.47.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.48.求曲線在點(diǎn)(1,3)處的切線方程.

49.

50.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.51.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).

52.

53.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則54.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.55.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

56.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

57.證明:58.

59.求微分方程y"-4y'+4y=e-2x的通解.

60.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

四、解答題(10題)61.判定y=x-sinx在[0,2π]上的單調(diào)性。

62.

63.設(shè)y=y(x)由方程y2-3xy+x3=1確定,求dy.64.

65.

66.

67.

68.

69.

70.函數(shù)y=y(x)由方程ey=sin(x+y)確定,求dy.

五、高等數(shù)學(xué)(0題)71.已知某廠生產(chǎn)x件產(chǎn)品的成本為

問(wèn):若使平均成本最小,應(yīng)生產(chǎn)多少件產(chǎn)品?

六、解答題(0題)72.求由曲線y=2-x2,y=2x-1及x≥0圍成的平面圖形的面積S,以及此平面圖形繞x軸旋轉(zhuǎn)所成旋轉(zhuǎn)體的體積.

參考答案

1.B

2.C本題考查的知識(shí)點(diǎn)為二次曲面的方程。

將x2+y2-z=0與二次曲面標(biāo)準(zhǔn)方程對(duì)照,可知其為旋轉(zhuǎn)拋面,故應(yīng)選C。

3.C

4.B

5.C

6.B本題考查的知識(shí)點(diǎn)為可變上限的積分.

由于,從而知

可知應(yīng)選B.

7.A解析:績(jī)效評(píng)估的步驟:(1)確定特定的績(jī)效評(píng)估目標(biāo);(2)確定考評(píng)責(zé)任者;(3)評(píng)價(jià)業(yè)績(jī);(4)公布考評(píng)結(jié)果,交流考評(píng)意見(jiàn);(5)根據(jù)考評(píng)結(jié)論,將績(jī)效評(píng)估的結(jié)論備案。

8.A因f(x)=(1+x)ex且處處可導(dǎo),于是,f'(x)=ex+(1+x)·ex=(x+2)ex,令f'(x)=0得駐點(diǎn)x=-2;又x<-2時(shí),f'(x)<0;x>-2時(shí),f'(x)>0;從而f(x)在i=-2處取得極小值,且f(x)只有一個(gè)極值.

9.D

10.C本題考查的知識(shí)點(diǎn)為定積分的運(yùn)算。

故應(yīng)選C。

11.A

12.A因f(x-1)=x2-1,故f(x)=(x+1)2-1=x2+2x,則f'(x)=2x+2.

13.C本題考查的知識(shí)點(diǎn)為二階偏導(dǎo)數(shù)。由于z=y(tǒng)sinx,因此可知應(yīng)選C。

14.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定。∴可導(dǎo)是可積的充分條件

15.A

16.B

17.B解析:

18.D

19.A

20.A

21.0

22.本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

所給級(jí)數(shù)為缺項(xiàng)情形,由于

23.解析:

24.1/200

25.26.±1.

本題考查的知識(shí)點(diǎn)為判定函數(shù)的間斷點(diǎn).

27.

解析:本題考查的知識(shí)點(diǎn)為不定積分的湊微分法.

28.

29.2m2m解析:

30.31.0

本題考查的知識(shí)點(diǎn)為無(wú)窮小量的性質(zhì).

32.yf''(xy)+f'(x+y)+yf''(x+y)

33.

34.33解析:35.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.積分區(qū)域D可以表示為:0≤x≤1,x2≤y≤x,因此

36.-3sin3x-3sin3x解析:

37.

38.

39.本題考查的知識(shí)點(diǎn)為交換二重積分次序.

積分區(qū)域D:0≤x≤1,x2≤y≤x

積分區(qū)域D也可以表示為0≤y≤1,y≤x≤,因此

40.本題考查的知識(shí)點(diǎn)為定積分的基本公式。

41.

42.

43.由一階線性微分方程通解公式有

44.

列表:

說(shuō)明

45.

46.

47.

48.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

49.

50.由二重積分物理意義知

51.

52.53.由等價(jià)無(wú)窮小量的定義可知

54.

55.函數(shù)的定義域?yàn)?/p>

注意

56.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

57.

58.

59.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

60.

61.因?yàn)樵赱02π]內(nèi)y'=1-cosx≥0可知在[02π]上y=x-sinx單調(diào)增加。因?yàn)樵赱0,2π]內(nèi),y'=1-cosx≥0,可知在[0,2π]上y=x-sinx單調(diào)增加。

62.

63.本題考查的知識(shí)點(diǎn)為求隱函數(shù)的微分.

若y=y(x)由方程F(x,y)=0確定,求dy常常有兩種方法.

(1)將方程F(x,y)=0直接求微分,然后解出dy.

(2)先由方程F(x,y)=0求y',再由dy=y'dx得出微分dy.

64.

65.

66.

67.

68.

69.

70.

71.

∴x=1000(件)平均成本取最小值。

∴x=1000(件)平均

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論