2023年四川省資陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2023年四川省資陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2023年四川省資陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2023年四川省資陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2023年四川省資陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年四川省資陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.

3.設(shè)y=5x,則y'=A.A.5xln5

B.5x/ln5

C.x5x-1

D.5xlnx

4.A.A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面

5.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為

A.2B.-2C.3D.-3

6.設(shè)f(x)在點(diǎn)x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點(diǎn)x0必定可導(dǎo)

B.f(x)在點(diǎn)x0必定不可導(dǎo)

C.

D.

7.

8.

9.設(shè)f(x)為連續(xù)的奇函數(shù),則等于().A.A.2af(x)

B.

C.0

D.f(a)-f(-a)

10.

11.

12.

13.∫sin5xdx等于().

A.A.

B.

C.

D.

14.

15.

A.2x-2B.2y+4C.2x+2y+2D.2y+4+x2-2x

16.過(guò)點(diǎn)(1,0,0),(0,1,0),(0,0,1)的平面方程為().

A.x+y+z=1

B.2x+y+z=1

C.x+2y+z=1

D.x+y+2z=1

17.

18.設(shè)z=x3-3x-y,則它在點(diǎn)(1,0)處

A.取得極大值B.取得極小值C.無(wú)極值D.無(wú)法判定19.微分方程y'+y=0的通解為y=A.e-x+C

B.-e-x+C

C.Ce-x

D.Cex

20.曲線y=lnx-2在點(diǎn)(e,-1)的切線方程為()A.A.

B.

C.

D.

二、填空題(20題)21.

22.23.24.

25.

26.

27.

28.

29.

30.設(shè)f(x)=1+cos2x,則f'(1)=__________。

31.

32.設(shè)函數(shù)z=f(x,y)存在一階連續(xù)偏導(dǎo)數(shù),則全微分出dz=______.

33.34.

35.

36.

37.________.38.=______.

39.

40.三、計(jì)算題(20題)41.

42.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

43.

44.求微分方程的通解.45.46.

47.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.48.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

49.

50.51.證明:52.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

53.求微分方程y"-4y'+4y=e-2x的通解.

54.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

55.求曲線在點(diǎn)(1,3)處的切線方程.56.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).57.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.58.59.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則60.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.四、解答題(10題)61.62.展開(kāi)成x-1的冪級(jí)數(shù),并指明收斂區(qū)間(不考慮端點(diǎn))。

63.設(shè)z=x2+y/x,求dz。

64.

65.

66.設(shè)z=z(x,y)由ez-xyz=1所確定,求全微分dz。

67.

68.69.求70.五、高等數(shù)學(xué)(0題)71.f(z,y)=e-x.sin(x+2y),求

六、解答題(0題)72.將周長(zhǎng)為12的矩形繞其一邊旋轉(zhuǎn)得一圓柱體,問(wèn)繞邊長(zhǎng)為多少的邊旋轉(zhuǎn)才能使圓柱體的體積最大?

參考答案

1.A

2.C

3.A由導(dǎo)數(shù)公式可知(5x)'=5xln5,故選A。

4.C本題考查的知識(shí)點(diǎn)為二次曲面的方程.

5.C解析:

6.C本題考查的知識(shí)點(diǎn)為極限、連續(xù)與可導(dǎo)性的關(guān)系.

這些性質(zhì)考生應(yīng)該熟記.由這些性質(zhì)可知本例應(yīng)該選C.

7.B

8.C

9.C本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性.

由定積分的對(duì)稱性質(zhì)可知:若f(x)為[-a,a]上的連續(xù)的奇函數(shù),則

可知應(yīng)選C.

10.A

11.A解析:

12.D

13.A本題考查的知識(shí)點(diǎn)為不定積分的換元積分法.

,可知應(yīng)選D.

14.D

15.B解析:

16.A設(shè)所求平面方程為.由于點(diǎn)(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標(biāo)分別代入所設(shè)平面方程,可得方程組

故選A.

17.D

18.C

19.C

20.D

21.

22.

本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

注意此處冪級(jí)數(shù)為缺項(xiàng)情形.

23.3(x-1)-(y+2)+z=0(或3x-y+z=5).

本題考查的知識(shí)點(diǎn)為平面與直線的方程.

由題設(shè)條件可知應(yīng)該利用點(diǎn)法式方程來(lái)確定所求平面方程.

所給直線z的方向向量s=(3,-1,1).若所求平面π垂直于直線1,則平面π的法向量n∥s,不妨取n=s=(3,-1,1).則由平面的點(diǎn)法式方程可知

3(x-1)-[y-(-2)]+(z-0)=0,

即3(x-1)-(y+2)+z=0

為所求平面方程.

或?qū)憺?x-y+z-5=0.

上述兩個(gè)結(jié)果都正確,前者3(x-1)-(y+2)+z=0稱為平面的點(diǎn)法式方程,而后者3x-y+z-5=0

稱為平面的-般式方程.24.3yx3y-1

25.

26.2m2m解析:

27.e1/2e1/2

解析:

28.2/329.2本題考查的知識(shí)點(diǎn)為極限運(yùn)算.

由于所給極限為“”型極限,由極限四則運(yùn)算法則有

30.-2sin2

31.yxy-132.依全微分存在的充分條件知

33.

34.

本題考查的知識(shí)點(diǎn)為重要極限公式.

35.-2-2解析:

36.

37.38.本題考查的知識(shí)點(diǎn)為定積分的換元積分法。設(shè)t=x/2,則x=2t,dx=2dt.當(dāng)x=0時(shí),t=0;當(dāng)x=π時(shí),t=π/2。因此

39.40.±1.

本題考查的知識(shí)點(diǎn)為判定函數(shù)的間斷點(diǎn).

41.

42.

43.

44.

45.46.由一階線性微分方程通解公式有

47.

48.函數(shù)的定義域?yàn)?/p>

注意

49.

50.

51.

52.

列表:

說(shuō)明

53.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

54.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%55.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

56.57.由二重積分物理意義知

58.

59.由等價(jià)無(wú)窮小量的定義可知

60.

61.本題考查的知識(shí)點(diǎn)為被積函數(shù)為分段函數(shù)的定積分.

當(dāng)被積函數(shù)為分段函數(shù)時(shí),應(yīng)將積分區(qū)間分為幾個(gè)子區(qū)間,使被積函數(shù)在每個(gè)子區(qū)間內(nèi)有唯一的表達(dá)式.

62.

63.

64.

65.

66.

67.

68.

69.本題考查的知識(shí)點(diǎn)為極限的四則運(yùn)算法則.

由于分母中含有根式,可以先將分子、分母同乘以

70.

71.f(xy)=e-x.sin(x+2y)∴fx"(zy)=一e-x.sin(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論